No project description provided
Project description
GPUQueue A very simple GPU tool - To run multiple jobs with assigned (limited) GPU resources
It provides very simple and basic function of dynamically utilize given GPUs with a large job array. It can be used to automatically identify the GPU that has been released by a newly-ended program.
Examples
python interface
from gpu_queue import JobSubmitter
job_array = [
"python -c 'import os, time;print(\"GPU num utilized\",os.environ[\"CUDA_VISIBLE_DEVICES\"]);time.sleep(3)'",
"python -c 'import os, time;print(\"GPU num utilized\",os.environ[\"CUDA_VISIBLE_DEVICES\"]);time.sleep(2)'",
"python -c 'import os, time;print(\"GPU num utilized\",os.environ[\"CUDA_VISIBLE_DEVICES\"]);time.sleep(0.5)'",
"python -c 'import os, time;print(\"GPU num utilized\",os.environ[\"CUDA_VISIBLE_DEVICES\"]);time.sleep(0.5)'",
"python -c 'import os, time;print(\"GPU num utilized\",os.environ[\"CUDA_VISIBLE_DEVICES\"]);time.sleep(3)'",
"python -c 'import os, time;print(\"GPU num utilized\",os.environ[\"CUDA_VISIBLE_DEVICES\"]);time.sleep(1)'",
]
J = JobSubmitter(job_array, [0, 1, 2])
J.submit_jobs()
Output:
6 jobs has been saved
GPU num utilized 0
GPU num utilized 2
GPU num utilized 1
GPU num utilized 2
GPU num utilized 2
GPU num utilized 1
all jobs has been run
sucessful jobs: 6
failed jobs: 0
gpuqueue can be directly used in the bash
Bash interface
#!/usr/bin/env bash
# example of typical machine learning hyper-parameter tuning
# mean teacher for semi supervised learning
save_dir=cifar10/labeled_sample_4000/augment_img
EMA_decay=0.999
declare -a StringArray=(
"python classify_main.py Trainer.name=MeanTeacherTrainer Config=config/cifar_mt_config.yaml Trainer.save_dir=${save_dir}/meanteacherbaseline RegScheduler.max_value=0 Trainer.EMA_decay=${EMA_decay} "
"python classify_main.py Trainer.name=MeanTeacherTrainer Config=config/cifar_mt_config.yaml Trainer.save_dir=${save_dir}/meanteacher_0.1 RegScheduler.max_value=0.1 Trainer.EMA_decay=${EMA_decay} "
"python classify_main.py Trainer.name=MeanTeacherTrainer Config=config/cifar_mt_config.yaml Trainer.save_dir=${save_dir}/meanteacher_1 RegScheduler.max_value=1 Trainer.EMA_decay=${EMA_decay} "
"python classify_main.py Trainer.name=MeanTeacherTrainer Config=config/cifar_mt_config.yaml Trainer.save_dir=${save_dir}/meanteacher_10 RegScheduler.max_value=10 Trainer.EMA_decay=${EMA_decay} "
"python classify_main.py Trainer.name=MeanTeacherTrainer Config=config/cifar_mt_config.yaml Trainer.save_dir=${save_dir}/meanteacher_20 RegScheduler.max_value=20 Trainer.EMA_decay=${EMA_decay} "
"python classify_main.py Trainer.name=MeanTeacherTrainer Config=config/cifar_mt_config.yaml Trainer.save_dir=${save_dir}/meanteacher_50 RegScheduler.max_value=50 Trainer.EMA_decay=${EMA_decay} "
)
# just using 0 and 1 gpus for those jobs
gpuqueue "${StringArray[@]}" --available_gpus 0 1
install
pip install gpuqueue
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file GPUQueue-0.0.3.tar.gz.
File metadata
- Download URL: GPUQueue-0.0.3.tar.gz
- Upload date:
- Size: 4.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.3
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
6b8c7fd192d922984893ceaac5e152f8408f0015f6eea07b9188d4efe5b405b0
|
|
| MD5 |
2c9d4d37f0d8221dde85d52cceeeac42
|
|
| BLAKE2b-256 |
246ebebbb9b4d850a26829266f5976c725bf4b4b515ebcf633dfb51bae03109a
|
File details
Details for the file GPUQueue-0.0.3-py3-none-any.whl.
File metadata
- Download URL: GPUQueue-0.0.3-py3-none-any.whl
- Upload date:
- Size: 4.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.3
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
2c4f63b5e2cfe08e3f7e8caceacbeedc039caf610915ae1b076c83b59d863453
|
|
| MD5 |
d6489b4f0308f8ed5eebfd41a9ab5d94
|
|
| BLAKE2b-256 |
20fcc0176ae76b31efea144c0d8fa1027751dc071bba85f59d2a4e80b18716e8
|