Skip to main content
Join the official 2019 Python Developers SurveyStart the survey!

No project description provided

Project description

GPUQueue A very simple GPU tool - To run multiple jobs with assigned (limited) GPU resources

It provides very simple and basic function of dynamically utilize given GPUs with a large job array. It can be used to automatically identify the GPU that has been released by a newly-ended program.

Examples


python interface

from gpu_queue import JobSubmitter

job_array = [
    "python -c 'import os, time;print(\"GPU num utilized\",os.environ[\"CUDA_VISIBLE_DEVICES\"]);time.sleep(3)'",
    "python -c 'import os, time;print(\"GPU num utilized\",os.environ[\"CUDA_VISIBLE_DEVICES\"]);time.sleep(2)'",
    "python -c 'import os, time;print(\"GPU num utilized\",os.environ[\"CUDA_VISIBLE_DEVICES\"]);time.sleep(0.5)'",
    "python -c 'import os, time;print(\"GPU num utilized\",os.environ[\"CUDA_VISIBLE_DEVICES\"]);time.sleep(0.5)'",
    "python -c 'import os, time;print(\"GPU num utilized\",os.environ[\"CUDA_VISIBLE_DEVICES\"]);time.sleep(3)'",
    "python -c 'import os, time;print(\"GPU num utilized\",os.environ[\"CUDA_VISIBLE_DEVICES\"]);time.sleep(1)'",
]

J = JobSubmitter(job_array, [0, 1, 2])
J.submit_jobs()

Output:

6 jobs has been saved
GPU num utilized 0
GPU num utilized 2
GPU num utilized 1
GPU num utilized 2
GPU num utilized 2
GPU num utilized 1
all jobs has been run
sucessful jobs: 6

failed jobs: 0

gpuqueue can be directly used in the bash
Bash interface

#!/usr/bin/env bash

# example of typical machine learning hyper-parameter tuning 
# mean teacher for semi supervised learning

save_dir=cifar10/labeled_sample_4000/augment_img
EMA_decay=0.999

declare -a StringArray=(
"python classify_main.py Trainer.name=MeanTeacherTrainer Config=config/cifar_mt_config.yaml Trainer.save_dir=${save_dir}/meanteacherbaseline  RegScheduler.max_value=0  Trainer.EMA_decay=${EMA_decay}  "
"python classify_main.py Trainer.name=MeanTeacherTrainer Config=config/cifar_mt_config.yaml Trainer.save_dir=${save_dir}/meanteacher_0.1      RegScheduler.max_value=0.1  Trainer.EMA_decay=${EMA_decay} "
"python classify_main.py Trainer.name=MeanTeacherTrainer Config=config/cifar_mt_config.yaml Trainer.save_dir=${save_dir}/meanteacher_1        RegScheduler.max_value=1  Trainer.EMA_decay=${EMA_decay}  "
"python classify_main.py Trainer.name=MeanTeacherTrainer Config=config/cifar_mt_config.yaml Trainer.save_dir=${save_dir}/meanteacher_10       RegScheduler.max_value=10  Trainer.EMA_decay=${EMA_decay} "
"python classify_main.py Trainer.name=MeanTeacherTrainer Config=config/cifar_mt_config.yaml Trainer.save_dir=${save_dir}/meanteacher_20       RegScheduler.max_value=20  Trainer.EMA_decay=${EMA_decay} "
"python classify_main.py Trainer.name=MeanTeacherTrainer Config=config/cifar_mt_config.yaml Trainer.save_dir=${save_dir}/meanteacher_50       RegScheduler.max_value=50  Trainer.EMA_decay=${EMA_decay} "
)
# just using 0 and 1 gpus for those jobs
gpuqueue "${StringArray[@]}" --available_gpus 0 1

install

pip install gpuqueue

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for GPUQueue, version 0.0.3
Filename, size File type Python version Upload date Hashes
Filename, size GPUQueue-0.0.3-py3-none-any.whl (4.8 kB) File type Wheel Python version py3 Upload date Hashes View hashes
Filename, size GPUQueue-0.0.3.tar.gz (4.0 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page