Skip to main content

The Gaussian Process Toolbox

Project description

# GPy

The Gaussian processes framework in Python.

* GPy [homepage](http://sheffieldml.github.io/GPy/)
* Tutorial [notebooks](http://nbviewer.ipython.org/github/SheffieldML/notebook/blob/master/GPy/index.ipynb)
* User [mailing-list](https://lists.shef.ac.uk/sympa/subscribe/gpy-users)
* Developer [documentation](http://gpy.readthedocs.org/en/devel/)
* Travis-CI [unit-tests](https://travis-ci.org/SheffieldML/GPy)
* [![licence](https://img.shields.io/badge/licence-BSD-blue.svg)](http://opensource.org/licenses/BSD-3-Clause)

## Updated Structure

We have pulled the core parameterization out of GPy. It is a package called [paramz](https://github.com/sods/paramz) and is the pure gradient based model optimization.

If you installed GPy with pip, just upgrade the package using:

$ pip install --upgrade GPy

If you have the developmental version of GPy (using the develop or -e option) just install the dependencies by running

$ python setup.py develop

again, in the GPy installation folder.

A warning: This usually works, but sometimes `distutils/setuptools` opens a
whole can of worms here, specially when compiled extensions are involved.
If that is the case, it is best to clean the repo and reinstall.

## Continuous integration

| | Travis-CI | Codecov | RTFD |
| ---: | :--: | :---: | :---: |
| **master:** | [![masterstat](https://travis-ci.org/SheffieldML/GPy.svg?branch=master)](https://travis-ci.org/SheffieldML/GPy) | [![covmaster](http://codecov.io/github/SheffieldML/GPy/coverage.svg?branch=master)](http://codecov.io/github/SheffieldML/GPy?branch=master) | [![docmaster](https://readthedocs.org/projects/gpy/badge/?version=master)](http://gpy.readthedocs.org/en/master/) |
| **devel:** | [![develstat](https://travis-ci.org/SheffieldML/GPy.svg?branch=devel)](https://travis-ci.org/SheffieldML/GPy) | [![covdevel](http://codecov.io/github/SheffieldML/GPy/coverage.svg?branch=devel)](http://codecov.io/github/SheffieldML/GPy?branch=devel) | [![docdevel](https://readthedocs.org/projects/gpy/badge/?version=devel)](http://gpy.readthedocs.org/en/devel/) |

## Supported Platforms:

[<img src="https://www.python.org/static/community_logos/python-logo-generic.svg" height=40px>](https://www.python.org/)
[<img src="https://upload.wikimedia.org/wikipedia/commons/5/5f/Windows_logo_-_2012.svg" height=40px>](http://www.microsoft.com/en-gb/windows)
[<img src="https://upload.wikimedia.org/wikipedia/commons/8/8e/OS_X-Logo.svg" height=40px>](http://www.apple.com/osx/)
[<img src="https://upload.wikimedia.org/wikipedia/commons/3/35/Tux.svg" height=40px>](https://en.wikipedia.org/wiki/List_of_Linux_distributions)

Python 2.7, 3.3 and higher

## Citation

@Misc{gpy2014,
author = {{The GPy authors}},
title = {{GPy}: A Gaussian process framework in python},
howpublished = {\url{http://github.com/SheffieldML/GPy}},
year = {2012--2015}
}

### Pronounciation:

We like to pronounce it 'g-pie'.

## Getting started: installing with pip

We are now requiring the newest version (0.16) of
[scipy](http://www.scipy.org/) and thus, we strongly recommend using
the [anaconda python distribution](http://continuum.io/downloads).
With anaconda you can install GPy by the following:

conda update scipy
pip install gpy

We've also had luck with [enthought](http://www.enthought.com). Install scipy 0.16 (or later)
and then pip install GPy:

pip install gpy

If you'd like to install from source, or want to contribute to the project (i.e. by sending pull requests via github), read on.

### Troubleshooting installation problems

If you're having trouble installing GPy via `pip install GPy` here is a probable solution:

git clone https://github.com/SheffieldML/GPy.git
cd GPy
git checkout devel
python setup.py build_ext --inplace
nosetests GPy/testing

### Direct downloads

[![PyPI version](https://badge.fury.io/py/GPy.svg)](https://pypi.python.org/pypi/GPy) [![source](https://img.shields.io/badge/download-source-green.svg)](https://pypi.python.org/pypi/GPy)
[![Windows](https://img.shields.io/badge/download-windows-orange.svg)](https://pypi.python.org/pypi/GPy)
[![MacOSX](https://img.shields.io/badge/download-macosx-blue.svg)](https://pypi.python.org/pypi/GPy)

## Running unit tests:

Ensure nose is installed via pip:

pip install nose

Run nosetests from the root directory of the repository:

nosetests -v GPy/testing

or from within IPython

import GPy; GPy.tests()

or using setuptools

python setup.py test

## Ubuntu hackers

> Note: Right now the Ubuntu package index does not include scipy 0.16.0, and thus, cannot
> be used for GPy. We hope this gets fixed soon.

For the most part, the developers are using ubuntu. To install the required packages:

sudo apt-get install python-numpy python-scipy python-matplotlib

clone this git repository and add it to your path:

git clone git@github.com:SheffieldML/GPy.git ~/SheffieldML
echo 'PYTHONPATH=$PYTHONPATH:~/SheffieldML' >> ~/.bashrc


## Compiling documentation:

The documentation is stored in doc/ and is compiled with the Sphinx Python documentation generator, and is written in the reStructuredText format.

The Sphinx documentation is available here: http://sphinx-doc.org/latest/contents.html

**Installing dependencies:**

To compile the documentation, first ensure that Sphinx is installed. On Debian-based systems, this can be achieved as follows:

sudo apt-get install python-pip
sudo pip install sphinx

**Compiling documentation:**

The documentation can be compiled as follows:

cd doc
sphinx-apidoc -o source/ ../GPy/
make html

The HTML files are then stored in doc/build/html

## Funding Acknowledgements

Current support for the GPy software is coming through the following projects.

* [EU FP7-HEALTH Project Ref 305626](http://radiant-project.eu) "RADIANT: Rapid Development and Distribution of Statistical Tools for High-Throughput Sequencing Data"

* [EU FP7-PEOPLE Project Ref 316861](http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/projects/mlpm/) "MLPM2012: Machine Learning for Personalized Medicine"

* MRC Special Training Fellowship "Bayesian models of expression in the transcriptome for clinical RNA-seq"

* [EU FP7-ICT Project Ref 612139](http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/projects/wysiwyd/) "WYSIWYD: What You Say is What You Did"

Previous support for the GPy software came from the following projects:

- [BBSRC Project No BB/K011197/1](http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/projects/recombinant/) "Linking recombinant gene sequence to protein product manufacturability using CHO cell genomic resources"
- [EU FP7-KBBE Project Ref 289434](http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/projects/biopredyn/) "From Data to Models: New Bioinformatics Methods and Tools for Data-Driven Predictive Dynamic Modelling in Biotechnological Applications"
- [BBSRC Project No BB/H018123/2](http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/projects/iterative/) "An iterative pipeline of computational modelling and experimental design for uncovering gene regulatory networks in vertebrates"
- [Erasysbio](http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/projects/synergy/) "SYNERGY: Systems approach to gene regulation biology through nuclear receptors"

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

GPy-1.0.0.tar.gz (3.6 MB view details)

Uploaded Source

Built Distributions

GPy-1.0.0-cp35-cp35m-macosx_10_5_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.5mmacOS 10.5+ x86-64

GPy-1.0.0-cp34-cp34m-macosx_10_5_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.4mmacOS 10.5+ x86-64

GPy-1.0.0-cp33-cp33m-macosx_10_5_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.3mmacOS 10.5+ x86-64

GPy-1.0.0-cp27-cp27m-macosx_10_5_x86_64.whl (4.1 MB view details)

Uploaded CPython 2.7mmacOS 10.5+ x86-64

File details

Details for the file GPy-1.0.0.tar.gz.

File metadata

  • Download URL: GPy-1.0.0.tar.gz
  • Upload date:
  • Size: 3.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for GPy-1.0.0.tar.gz
Algorithm Hash digest
SHA256 512e5ea453d2d32cf484ad80dd50f2a06f5a99cfdf518960f7879b746e9194e6
MD5 0e3d5fb510aceaa11c7039b1d4ae4190
BLAKE2b-256 4376c8dc19a08ba0c81b052233a622d8eafa5132f011cdf714bf833976f769d4

See more details on using hashes here.

File details

Details for the file GPy-1.0.0-cp35-cp35m-macosx_10_5_x86_64.whl.

File metadata

File hashes

Hashes for GPy-1.0.0-cp35-cp35m-macosx_10_5_x86_64.whl
Algorithm Hash digest
SHA256 a0daeaa00beaf9147b0c30035f42754f439dd8a4bb26185aa3ffb968b4b8a467
MD5 c2ae951b4a96fe4181358bf406090656
BLAKE2b-256 d03781190d5be4605acff045c2758fedfe709fffac29e5cac15ac26e68273504

See more details on using hashes here.

File details

Details for the file GPy-1.0.0-cp34-cp34m-macosx_10_5_x86_64.whl.

File metadata

File hashes

Hashes for GPy-1.0.0-cp34-cp34m-macosx_10_5_x86_64.whl
Algorithm Hash digest
SHA256 b6a374d98e799b5ca0ce794903bf74d4997e9e722363a1601501fb66a6329a05
MD5 25b87ce0ca65ee9a07afa2a8e96754c8
BLAKE2b-256 9849708e96456d67983ed862daf790a15272b538b7364741744a814361b314a8

See more details on using hashes here.

File details

Details for the file GPy-1.0.0-cp33-cp33m-macosx_10_5_x86_64.whl.

File metadata

File hashes

Hashes for GPy-1.0.0-cp33-cp33m-macosx_10_5_x86_64.whl
Algorithm Hash digest
SHA256 3064d39c78bfe6e0d9a3d48cae465f739f301b7db600883f5e9ba12e367ee65f
MD5 3e836ffcf66720abee12c349f160305e
BLAKE2b-256 d33e0a922dc72b4e7cd6b6108c39fc9cd389bc58f7cb977910301f02fdeaf693

See more details on using hashes here.

File details

Details for the file GPy-1.0.0-cp27-cp27m-macosx_10_5_x86_64.whl.

File metadata

File hashes

Hashes for GPy-1.0.0-cp27-cp27m-macosx_10_5_x86_64.whl
Algorithm Hash digest
SHA256 ed8c6069f04295f81bd5ea9b73ea22880b823ee9014dd09d76ad5fefc060ad6f
MD5 5b92a701435cd7843e84592ad2e0ac81
BLAKE2b-256 4bf67103c29c0ec35c334cf2d017e704836abb8af855b0114d465d28b9efc236

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page