Skip to main content

The Bayesian Optimization Toolbox

Project description

GPyOpt
======

Gaussian process optimization using [GPy](http://sheffieldml.github.io/GPy/). Performs global optimization with different acquisition functions. Among other functionalities, it is possible to use GPyOpt to optimize physical experiments (sequentially or in batches) and tune the parameters of Machine Learning algorithms. It is able to handle large data sets via sparse Gaussian process models.

* [GPyOpt homepage](http://sheffieldml.github.io/GPyOpt/)
* [Tutorial Notebooks](http://nbviewer.ipython.org/github/SheffieldML/GPyOpt/blob/master/manual/index.ipynb)
* [Users Mailing list](https://lists.shef.ac.uk/sympa/info/gpyopt-users)
* [Online documentation](http://pythonhosted.org/GPyOpt)

[![licence](https://img.shields.io/badge/licence-BSD-blue.svg)](http://opensource.org/licenses/BSD-3-Clause) [![develstat](https://travis-ci.org/SheffieldML/GPyOpt.svg?branch=master)](https://travis-ci.org/SheffieldML/GPyOpt) [![covdevel](http://codecov.io/github/SheffieldML/GPyOpt/coverage.svg?branch=master)](http://codecov.io/github/SheffieldML/GPyOpt?branch=master) [![Research software impact](http://depsy.org/api/package/pypi/GPyOpt/badge.svg)](http://depsy.org/package/python/GPyOpt)


### Citation

@Misc{gpyopt2016,
author = {The GPyOpt authors},
title = {{GPyOpt}: A Bayesian Optimization framework in python},
howpublished = {\url{http://github.com/SheffieldML/GPyOpt}},
year = {2016}
}

Getting started
===============

Installing with pip
-------------------
The simplest way to install GPyOpt is using pip. ubuntu users can do:

```bash
sudo apt-get install python-pip
pip install gpyopt
```

If you'd like to install from source, or want to contribute to the project (e.g. by sending pull requests via github), read on. Clone the repository in GitHub and add it to your $PYTHONPATH.

```bash
git clone https://github.com/SheffieldML/GPyOpt.git
cd GPyOpt
python setup.py develop
```

Dependencies:
------------------------
- GPy
- paramz
- numpy
- scipy
- matplotlib
- DIRECT (optional)
- cma (optional)
- pyDOE (optional)
- sobol_seq (optional)

You can install dependencies by running:
```
pip install -r requirements.txt
```


Funding Acknowledgements
========================
* [BBSRC Project No BB/K011197/1](http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/projects/recombinant/) "Linking recombinant gene sequence to protein product manufacturability using CHO cell genomic resources"

* See GPy funding Acknowledgements






Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

GPyOpt-1.2.1.tar.gz (46.8 kB view details)

Uploaded Source

File details

Details for the file GPyOpt-1.2.1.tar.gz.

File metadata

  • Download URL: GPyOpt-1.2.1.tar.gz
  • Upload date:
  • Size: 46.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for GPyOpt-1.2.1.tar.gz
Algorithm Hash digest
SHA256 659802f1d38619268929d44c0c9d8391ceb0fd7314f98737f983e888db426382
MD5 11830287cc9caaa2f60548d12561facf
BLAKE2b-256 efa755a77308ce5384f9c0a3dc5eb8b7e26b345219dc4f4831b1bd8688949527

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page