GeoPatch generates patches from remote sensing data and shapefiles for semantic segmentation and object detection with YOLO-format annotations
Project description
GeoPatch
GeoPatch is a package for generating patches from remote sensing data

GeoPatch enables users to read, process, and export GeoTIFF patches for training deep learning models. Built on the Rasterio library, it simplifies reading and exporting GeoTIFF patches for semantic segmentation and object detection. The package supports generating patches from raster labels or polygon shapefiles, producing outputs in GeoTIFF or NumPy formats with optional YOLO-format bounding box annotations.
Users can feed satellite imagery and corresponding label data (raster or shapefile) to export patches, with support for data augmentation (vertical flip, horizontal flip, and 90/180/270-degree rotations) for NumPy output. The package ensures complete image coverage, including edge pixels, and supports visualization of patches with optional bounding box overlays.
Any feedback is welcome! Contact me at hejarshahabi@gmail.com for contributions or suggestions.
Quick Tutorial on How to Use GeoPatch
1. Installation
pip install GeoPatch
This automatically installs dependencies, including GDAL, numpy, rasterio, geopandas, shapely, tqdm, matplotlib, and scikit-image for handling GeoTIFF files, shapefiles, and image processing.
2. Calling the Package
from GeoPatch import TrainPatch, PredictionPatch
3. Feeding Data
For the image variable, you can pass either a string (file path to .tif or .npy) or a NumPy array. For the label variable, you can pass a string (file path to .tif, .npy, or .shp for shapefiles) or a NumPy array. The package automatically processes and reads the dataset.
# For segmentation or detection with raster labels
patch = TrainPatch(image="xxx/image.tif", label="xxx/label.tif", patch_size=128, stride=64, channel_first=True, shapefile_path=None, label_field=None)
# For segmentation or detection with shapefile labels
patch = TrainPatch(image="xxx/image.tif", label=None, patch_size=128, stride=64, channel_first=True, shapefile_path="xxx/labels.shp", label_field="class_id")
4. Input Data Specifications
Display the shape and size of the input data:
patch.data_dimension()
5. Patch Details
Show the number of original image patches generated based on the given patch size and stride:
patch.patch_info()
6. Saving Image Patches as GeoTIFF Files (Segmentation)
Save image and label patches as GeoTIFF files in the specified folder_name under the current working directory. If only_label=True, only patches with non-zero labels are saved.
patch.generate_segmentation(format="tif", folder_name="seg_tif", only_label=True)
7. Saving Image Patches as NumPy Arrays (Segmentation)
Generate image and label patches in NumPy format with optional data augmentation (vertical flip, horizontal flip, 90/180/270-degree rotations). Augmentations are applied only for format="npy".
patch.generate_segmentation(
format="npy",
folder_name="seg_npy",
only_label=False,
return_stacked=False,
save_stack=False,
V_flip=True,
H_flip=True,
Rotation=True
)
# To return stacked NumPy patches:
patch_stacked, label_stacked = patch.generate_segmentation(
format="npy",
folder_name="seg_npy",
only_label=False,
return_stacked=True,
save_stack=False,
V_flip=True,
H_flip=True,
Rotation=True
)
8. Saving Patches for Object Detection (YOLO Format)
Generate patches for object detection, producing image patches, optional segmentation masks, and YOLO-format bounding box annotations (.txt files). Augmentations are applied only for format="npy".
patch.generate_detection(
format="npy",
folder_name="det_npy",
only_label=True,
return_stacked=False,
save_stack=False,
V_flip=True,
H_flip=True,
Rotation=True,
segmentation=True
)
9. Saving Patches from Shapefiles (Segmentation and/or Object Detection)
Generate patches for segmentation and/or object detection using a polygon shapefile. The shapefile is reprojected to WGS84 (EPSG:4326) before clipping and rasterization to ensure alignment with the image. Specify the label_field containing integer class IDs (e.g., class_id) during TrainPatch initialization. Outputs include image patches, optional segmentation masks, and YOLO-format bounding box annotations. Augmentations are applied only for format="npy".
patch = TrainPatch(
image="xxx/image.tif",
label=None,
patch_size=128,
stride=64,
channel_first=True,
shapefile_path="xxx/labels.shp",
label_field="class_id"
)
# For segmentation
patch.generate_segmentation(
format="npy",
folder_name="shp_npy",
only_label=True,
return_stacked=True,
save_stack=True,
V_flip=True,
H_flip=True,
Rotation=True
)
# For detection
patch.generate_detection(
format="npy",
folder_name="shp_npy",
only_label=True,
return_stacked=True,
save_stack=True,
V_flip=True,
H_flip=True,
Rotation=True,
segmentation=True
)
10. Patch Visualization
Display patches with their corresponding labels or bounding boxes. Specify the exact folder_name where patches are saved. Use show_bboxes=True to overlay YOLO bounding boxes.
patch.visualize(
folder_name="shp_npy",
patches_to_show=2,
band_num=1,
fig_size=(10, 20),
dpi=96,
show_bboxes=True
)
11. Generating Prediction Patches
Generate patches for prediction using the PredictionPatch class:
prediction = PredictionPatch(image="xxx/test_image.tif", patch_size=128, stride=128, channel_first=True)
12. Saving Prediction Patches
Save prediction patches as GeoTIFF or NumPy arrays. Edge pixels are included to ensure complete image coverage.
# Save as GeoTIFF
prediction.save_Geotif(folder_name="pred_tif")
# Save as NumPy arrays
prediction.save_numpy(folder_name="pred_npy")
Change Log
1.0 (04/07/2022)
- First Release
1.1 (03/08/2022)
- Fixed issues with loading NumPy arrays
- Fixed random visualization of samples
1.1.1 (15/12/2022)
- Fixed visualization issues in Linux environments
- Added
PredictionPatchclass for generating prediction patches
1.1.1 (22/11/2023)
- Fixed edge pixel issue in prediction patch generation to ensure entire image is patched
- Added GDAL to automatically installed packages
1.2 (27/07/2025)
- Added
generate_detectionmethod toTrainPatchfor object detection with YOLO-format bounding box annotations - Modified
generate_segmentationandgenerate_detectionto apply augmentations (V_flip, H_flip, Rotation) only forformat="npy", not forformat="tif", to prevent shape mismatch errors
1.3 (28/07/2025)
- Added support for generating patches from polygon shapefiles in
TrainPatch, enabling segmentation and/or object detection - Updated shapefile processing to reproject to WGS84 (EPSG:4326) before clipping and rasterization to prevent label mismatches due to CRS issues
- Removed redundant
shapefile_pathparameter ingenerate_from_shapefile, usinglabelandlabel_fieldfromTrainPatchinitialization - Added dependencies (
geopandas,shapely,scikit-image) to support shapefile processing and bounding box generation
1.3.1 (28/07/2025)
- minor bugs resolved
1.3.2 (28/07/2025)
- Removed verbose print statements in
preprocess_and_rasterizefunction to streamline output and improve user experience - Updated
TrainPatchinitialization to explicitly handleshapefile_pathandlabel_fieldparameters for clarity - Improved documentation to reflect updated
TrainPatchusage with shapefile inputs
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file geopatch-1.3.2.tar.gz.
File metadata
- Download URL: geopatch-1.3.2.tar.gz
- Upload date:
- Size: 11.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.11.5
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
1836263101c038c204f723026bfc3e6bef3bb16e4f4ad890ca10b29c45249a66
|
|
| MD5 |
09c54fbb63ee8b7ef135d79070c4a40d
|
|
| BLAKE2b-256 |
437e094756675248c1ec61defe0f25517323e3680eb82ccc231f2d87c617f9f9
|
File details
Details for the file geopatch-1.3.2-py3-none-any.whl.
File metadata
- Download URL: geopatch-1.3.2-py3-none-any.whl
- Upload date:
- Size: 10.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.11.5
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
468a959155c08e51e1e58b3444d54a0caecf3a63461c9fd2212c900e96728e84
|
|
| MD5 |
17c8446d304d48fe2b73f2d625f914a7
|
|
| BLAKE2b-256 |
b3a57bea33bf65e370babfe454751b6601b61c326433142555f5b3a0014d35d1
|