Skip to main content

Invariant Causal Prediction for python

Project description


Build Status codecov PyPI version

This packages provides a simple python implementation of Invariant Causal Prediction (ICP) [1].

See also the original implementation in the R package InvariantCausalPrediction.


pip install ICPy


import icpy as icpy
import numpy as np

n = 100
noise = 0.1
E = np.repeat([0, 1, 2], np.ceil(n / 3.0))[0:n]
A = np.random.normal(scale=noise, size=[n]) + np.equal(E, 1)
B = A + np.random.normal(scale=noise, size=[n]) / 3 + np.equal(E, 2)
C = B + np.random.normal(scale=noise, size=[n])
icpy.invariant_causal_prediction(X=np.column_stack((A, B)), y=C, z=E)


ICP(S_hat=array([1], dtype=int64), 
    p_values=array([  1.51508232e-01,   4.59577055e-37]), 


v0.0.003 (2020-05-15)

  • fix failing import (thanks to @lgmoneda, #1)
  • fix issues when environments are not subsequent whole numbers starting at 0 (thanks to @lgmoneda, #1)


[1] J. Peters, P. Bühlmann, N. Meinshausen, Causal inference by using invariant prediction: identification and confidence intervals, J. R. Stat. Soc. Ser. B Stat. Methodol. 78 (2016) 947-1012. doi:10.1111/rssb.12167.

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ICPy-0.0.5.tar.gz (3.5 kB view hashes)

Uploaded source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page