Skip to main content

Kernel Density Estimation in Python.

Project description

DOI Build & test (master) Documentation Status PyPI version Downloads

Want to cite KDEpy in your work? See the bottom right part of this website for citation information.

KDEpy

About

This Python 3.8+ package implements various kernel density estimators (KDE). Three algorithms are implemented through the same API: NaiveKDE, TreeKDE and FFTKDE. The class FFTKDE outperforms other popular implementations, see the comparison page. The code is stable and in widespread use by practitioners and in other packages.

Plot

The code generating the above graph is found in examples.py.

Installation

KDEpy is available through PyPI, and may be installed using pip:

pip install KDEpy

If you have trouble on Ubuntu, try running sudo apt install libpython3.X-dev, where 3.X is your Python version.

Example code and documentation

Below is an example showing an unweighted and weighted kernel density. From the code below, it should be clear how to set the kernel, bandwidth (variance of the kernel) and weights. See the documentation for more examples.

from KDEpy import FFTKDE
import matplotlib.pyplot as plt

customer_ages = [40, 56, 20, 35, 27, 24, 29, 37, 39, 46]

# Distribution of customers
x, y = FFTKDE(kernel="gaussian", bw="silverman").fit(customer_ages).evaluate()
plt.plot(x, y)

# Distribution of customer income (weight each customer by their income)
customer_income = [152, 64, 24, 140, 88, 64, 103, 148, 150, 132]

# The `bw` parameter can be manually set, e.g. `bw=5`
x, y = FFTKDE(bw="silverman").fit(customer_ages, weights=customer_income).evaluate()
plt.plot(x, y)

Plot

The package consists of three algorithms. Here's a brief explanation:

  • NaiveKDE - A naive computation. Supports d-dimensional data, variable bandwidth, weighted data and many kernel functions. Very slow on large data sets.
  • TreeKDE - A tree-based computation. Supports the same features as the naive algorithm, but is faster at the expense of small inaccuracy when using a kernel without finite support. Good for evaluation on non-uniform, arbitrary grids.
  • FFTKDE - A very fast convolution-based computation. Supports weighted d-dimensional data and many kernels, but not variable bandwidth. Must be evaluated on an equidistant grid, the finer the grid the higher the accuracy. Data points may not be outside of the grid.

Issues and contributing

Issues

If you are having trouble using the package, please let me know by creating an Issue on GitHub and I'll get back to you.

Contributing

Whatever your mathematical and Python background is, you are very welcome to contribute to KDEpy. To contribute, fork the project, create a branch and submit and Pull Request. Please follow these guidelines:

  • Import as few external dependencies as possible.
  • Use test driven development, have tests and docs for every method.
  • Cite literature and implement recent methods.
  • Unless it's a bottleneck computation, readability trumps speed.
  • Employ object orientation, but resist the temptation to implement many methods -- stick to the basics.
  • Follow PEP8.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

kdepy-1.1.12.tar.gz (171.7 kB view details)

Uploaded Source

Built Distributions

kdepy-1.1.12-cp313-cp313-win_amd64.whl (262.9 kB view details)

Uploaded CPython 3.13Windows x86-64

kdepy-1.1.12-cp313-cp313-win32.whl (250.2 kB view details)

Uploaded CPython 3.13Windows x86

kdepy-1.1.12-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (679.8 kB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64

kdepy-1.1.12-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (670.4 kB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ ARM64

kdepy-1.1.12-cp313-cp313-macosx_11_0_arm64.whl (265.5 kB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

kdepy-1.1.12-cp313-cp313-macosx_10_13_x86_64.whl (270.5 kB view details)

Uploaded CPython 3.13macOS 10.13+ x86-64

kdepy-1.1.12-cp312-cp312-win_amd64.whl (263.2 kB view details)

Uploaded CPython 3.12Windows x86-64

kdepy-1.1.12-cp312-cp312-win32.whl (250.3 kB view details)

Uploaded CPython 3.12Windows x86

kdepy-1.1.12-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (686.2 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

kdepy-1.1.12-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (676.2 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARM64

kdepy-1.1.12-cp312-cp312-macosx_11_0_arm64.whl (266.5 kB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

kdepy-1.1.12-cp312-cp312-macosx_10_13_x86_64.whl (271.5 kB view details)

Uploaded CPython 3.12macOS 10.13+ x86-64

kdepy-1.1.12-cp311-cp311-win_amd64.whl (262.2 kB view details)

Uploaded CPython 3.11Windows x86-64

kdepy-1.1.12-cp311-cp311-win32.whl (249.4 kB view details)

Uploaded CPython 3.11Windows x86

kdepy-1.1.12-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (691.5 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

kdepy-1.1.12-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (686.2 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

kdepy-1.1.12-cp311-cp311-macosx_11_0_arm64.whl (265.1 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

kdepy-1.1.12-cp311-cp311-macosx_10_9_x86_64.whl (269.8 kB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

kdepy-1.1.12-cp310-cp310-win_amd64.whl (262.1 kB view details)

Uploaded CPython 3.10Windows x86-64

kdepy-1.1.12-cp310-cp310-win32.whl (249.7 kB view details)

Uploaded CPython 3.10Windows x86

kdepy-1.1.12-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (656.8 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

kdepy-1.1.12-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (652.1 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

kdepy-1.1.12-cp310-cp310-macosx_11_0_arm64.whl (265.1 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

kdepy-1.1.12-cp310-cp310-macosx_10_9_x86_64.whl (269.6 kB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

kdepy-1.1.12-cp39-cp39-win_amd64.whl (262.6 kB view details)

Uploaded CPython 3.9Windows x86-64

kdepy-1.1.12-cp39-cp39-win32.whl (250.2 kB view details)

Uploaded CPython 3.9Windows x86

kdepy-1.1.12-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (659.7 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

kdepy-1.1.12-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (654.9 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

kdepy-1.1.12-cp39-cp39-macosx_11_0_arm64.whl (265.6 kB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

kdepy-1.1.12-cp39-cp39-macosx_10_9_x86_64.whl (270.2 kB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

kdepy-1.1.12-cp38-cp38-win_amd64.whl (262.8 kB view details)

Uploaded CPython 3.8Windows x86-64

kdepy-1.1.12-cp38-cp38-win32.whl (250.3 kB view details)

Uploaded CPython 3.8Windows x86

kdepy-1.1.12-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (671.1 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

kdepy-1.1.12-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (667.0 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARM64

kdepy-1.1.12-cp38-cp38-macosx_11_0_arm64.whl (265.4 kB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

kdepy-1.1.12-cp38-cp38-macosx_10_9_x86_64.whl (269.8 kB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

File details

Details for the file kdepy-1.1.12.tar.gz.

File metadata

  • Download URL: kdepy-1.1.12.tar.gz
  • Upload date:
  • Size: 171.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.8

File hashes

Hashes for kdepy-1.1.12.tar.gz
Algorithm Hash digest
SHA256 eb3a62abc5a982f5a30ec0a3560e2f9cbd3d19bc4f721b2ebbde06949d52af61
MD5 65d43f1a9692bf9161be5ea748695338
BLAKE2b-256 60a4ee1680051ef29215e9ef2d4c09719076d93e0a48c7a8784523fbb59368a8

See more details on using hashes here.

File details

Details for the file kdepy-1.1.12-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: kdepy-1.1.12-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 262.9 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.8

File hashes

Hashes for kdepy-1.1.12-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 f64b740a61f60076630cfcdd1ff011c70d1ce1a7ceab05b14763d95163140e46
MD5 177c707d5c0ab5cd7cccad0139358722
BLAKE2b-256 9f798cf9f01f653f2db7a48c9ae249dd818b2664ed9e30f5f0bb2414af783c70

See more details on using hashes here.

File details

Details for the file kdepy-1.1.12-cp313-cp313-win32.whl.

File metadata

  • Download URL: kdepy-1.1.12-cp313-cp313-win32.whl
  • Upload date:
  • Size: 250.2 kB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.8

File hashes

Hashes for kdepy-1.1.12-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 c5fdc115c212df1a622997a9d8ff9c1bae8179562cc8f2e9710adced96abfd20
MD5 bded0e9408020ec82edec9a068d213e2
BLAKE2b-256 d1a44a0ca91bc6dce8be7bb7dd647fbd576d22c7ea7cb58a6bfc96dc49f6064b

See more details on using hashes here.

File details

Details for the file kdepy-1.1.12-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kdepy-1.1.12-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e62facb46ea6d6eff92a0f8ad054bdf4b5a84ec66444b5cae9d5af1f828b07b7
MD5 fc414282ae7a39b3d869f9c6e66e16ed
BLAKE2b-256 577e53bc000edbe1ac835b351ade98e1b12d9e152814f6cf11021f7766460905

See more details on using hashes here.

File details

Details for the file kdepy-1.1.12-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for kdepy-1.1.12-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e0c5a22798499154e1aef0378fbeb04f8832dd74d05246fcdbb5438e3c4424e1
MD5 73480354ff9ba021d2d95dcbba70a12b
BLAKE2b-256 3c9f7f57e42a6dbec5d6275bf7d960cc3ef9408200c72aa7bbcd8b79a08cff9d

See more details on using hashes here.

File details

Details for the file kdepy-1.1.12-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for kdepy-1.1.12-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 df4335cac2eb387265ec93911a1fcf6520d5a6d2a7762cb00e134e6c3beae18d
MD5 6ac6af06204b82516054e9d17e0adc24
BLAKE2b-256 a40885c362e1bc5180ce6095aed9154ae86a48c9c21d001422defcd96fc0faca

See more details on using hashes here.

File details

Details for the file kdepy-1.1.12-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for kdepy-1.1.12-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 562d1d7a63e61209a9c2852e0de67090abe90def2e47deaf7d4bd935d36ba67b
MD5 e1fdc78b4c239584cd1305d9986f217a
BLAKE2b-256 41362f6f8726b88ac6552534cb7094fdf6fc4eaa5f5b4db2af77ed15667ee030

See more details on using hashes here.

File details

Details for the file kdepy-1.1.12-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: kdepy-1.1.12-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 263.2 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.8

File hashes

Hashes for kdepy-1.1.12-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 0834ff21a74fbd85ee748a8e9ff0edc886e0dd2c9a7011d4f69a943029a61e3d
MD5 c0591944f26527729a9541a8a609d7f3
BLAKE2b-256 c85e30b7fe14f16e331ccc68331dda83567200e691baffa5ccc60aa326499034

See more details on using hashes here.

File details

Details for the file kdepy-1.1.12-cp312-cp312-win32.whl.

File metadata

  • Download URL: kdepy-1.1.12-cp312-cp312-win32.whl
  • Upload date:
  • Size: 250.3 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.8

File hashes

Hashes for kdepy-1.1.12-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 2b00d31897ce5c88362149a5651048e594a5c0f7db7b85f0ace7767604bf004f
MD5 92ee8cd64b53358049350e5730cdcbd9
BLAKE2b-256 09bd390672f54d60c7f8094bdab68eca586e062fb97b622db9da3e97cc17fc2e

See more details on using hashes here.

File details

Details for the file kdepy-1.1.12-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kdepy-1.1.12-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6e5d59f51dd1797b7729e09993986f2920f45e62609c3704c5946aa5f05171f1
MD5 25a20e243eb9e60aa2735306184fa645
BLAKE2b-256 8ca17d3ab60c558d70fef89b92f27f51f361d8107b2b5f7ec2fab0d20531a1ec

See more details on using hashes here.

File details

Details for the file kdepy-1.1.12-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for kdepy-1.1.12-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f6a98453558eb39fe093601dea19769ebb13e371e11a212be516b27b4f059a55
MD5 46d4e53a1661ed1c8435414d4a81b3e9
BLAKE2b-256 0d4595c70b4934690e69ab74b4f165b6c87609399253f2fa57d13b9441aa0975

See more details on using hashes here.

File details

Details for the file kdepy-1.1.12-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for kdepy-1.1.12-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e9ffa424aa96988a9b7f0154168c17cf64cba46ad691a556e77e51cae7992864
MD5 223c9d67d99a8e8d42e899ff4bab6e13
BLAKE2b-256 f72e5e4eb6fdb929f293b6e3db55eb021d09b51bafb71104ea0e73acd6f21b7e

See more details on using hashes here.

File details

Details for the file kdepy-1.1.12-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for kdepy-1.1.12-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 35bdfc7f046014b6bdf83d6d14b2adbd8f08c1d3b83d63a91d74970dc8085972
MD5 c72298a06531798a0a564d3ee6d019ea
BLAKE2b-256 80ecb27b63a6fe7165d6679bfc6f62e73b56d8b6ad0377d0703c53493649a5a1

See more details on using hashes here.

File details

Details for the file kdepy-1.1.12-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: kdepy-1.1.12-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 262.2 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.8

File hashes

Hashes for kdepy-1.1.12-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 ff6a4db7b40a63b9accde48ebfd25e664138f37eda56ad1be34fe37f60ce3d84
MD5 5e214a33b7e965e328bd730a2b62afab
BLAKE2b-256 08f4b83f74465c9923e32b0c0bf038aa50551908fde7c95865ba63101c781c2d

See more details on using hashes here.

File details

Details for the file kdepy-1.1.12-cp311-cp311-win32.whl.

File metadata

  • Download URL: kdepy-1.1.12-cp311-cp311-win32.whl
  • Upload date:
  • Size: 249.4 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.8

File hashes

Hashes for kdepy-1.1.12-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 1089bbdc007c0495556d6409f7c9235abfc79071c7147781ca6f644aad4e5eb4
MD5 c6d30453c548f3401589cceaad512e1b
BLAKE2b-256 6e76570c619625ac546fcbb5b4d7b1d8d928dd9eaad7dba03b07898e7b710d33

See more details on using hashes here.

File details

Details for the file kdepy-1.1.12-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kdepy-1.1.12-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e1928bf44c9ee7f78239461d5670e8515f5d4a201eff5622547967c7c20fa82d
MD5 fe4bee29e1e211556cf2bc307f3b7bda
BLAKE2b-256 db40075110da71dd4240205803d8533ea588e6ed929d42d96c08764b5eecf93e

See more details on using hashes here.

File details

Details for the file kdepy-1.1.12-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for kdepy-1.1.12-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9e5115b65531d36ab48b9e9dd952221bb7789999f95c7b44564367f885f5ade5
MD5 c3c7ecea70fbc161580b1fce32861e84
BLAKE2b-256 24ab83658a77d77de77e72785bebe3c26a3c99583bca269223a805b19c6eaa95

See more details on using hashes here.

File details

Details for the file kdepy-1.1.12-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for kdepy-1.1.12-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b2f04a95a6d706ab6fcfba104c49b97e4b6ade40212bcface291e4ab6747eed0
MD5 3a889304e3077177cba15ef6de0679da
BLAKE2b-256 26a67559ae97ec9a178899469eb8d5fff49ef9cff53bbabacf2a986ef9e6dd03

See more details on using hashes here.

File details

Details for the file kdepy-1.1.12-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for kdepy-1.1.12-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4f7deb921bbe944247bf8c4d2b2078dd67be8130d3be4a32f947766daed60095
MD5 dd49a363ed9f8cb87940a1cee1606c21
BLAKE2b-256 6661211c8c0e63943c2274ea87c15f3a1e18d253eb71b783166a3219f66c8ec9

See more details on using hashes here.

File details

Details for the file kdepy-1.1.12-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: kdepy-1.1.12-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 262.1 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.8

File hashes

Hashes for kdepy-1.1.12-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 c7c5b091e3034d026bcf718a5efecbe2a1eee5100d1328621387d7fadb164dd8
MD5 dc50b2260faff14e1fb4c66438a3bda6
BLAKE2b-256 086c459fbef9332423af790bc03d9cfccb2e3868b09cd17c71da8b12216bcc05

See more details on using hashes here.

File details

Details for the file kdepy-1.1.12-cp310-cp310-win32.whl.

File metadata

  • Download URL: kdepy-1.1.12-cp310-cp310-win32.whl
  • Upload date:
  • Size: 249.7 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.8

File hashes

Hashes for kdepy-1.1.12-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 d3839f95cfd45084901a0d9c98b4ac83a5eb57449a6be7004d422cf29d9eedff
MD5 a7373ed5f82429979239d3e142634e07
BLAKE2b-256 5b48c7f11143dc2e158ea4f814debc22d1cdcfae3406f05bdb82ea56a1a7d486

See more details on using hashes here.

File details

Details for the file kdepy-1.1.12-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kdepy-1.1.12-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f3fccc80e33e291752d2cee7686628c19f066806b9b3f62d7d007c09c252c8fc
MD5 2b787c88dc1647c33e45e0a7da6480ff
BLAKE2b-256 635a596c179ca5cfc6d137b6d2b2b48106371ba475c1b264834d8097707f4721

See more details on using hashes here.

File details

Details for the file kdepy-1.1.12-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for kdepy-1.1.12-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ff27b711d3e914da68a80bdd8044d7992a9a48be090378be246f6b39d91b6e46
MD5 a2e2aa9f4328cba2ebbc813e83dac242
BLAKE2b-256 eeb278d97b9b291a34a9905e5796a6830e984de843de1570cd8002796c4e2566

See more details on using hashes here.

File details

Details for the file kdepy-1.1.12-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for kdepy-1.1.12-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 64a837b0c552d681ef7bdfa5b0e18bbbc66e3d5dac7ad7fc9919c881e0f16498
MD5 d20576a63253ee5a50a93d86dfc7adbf
BLAKE2b-256 de249ca4380a635ab07b41522e9a8146ddcfa9c6a2d3330c721fa32bf4c3f64e

See more details on using hashes here.

File details

Details for the file kdepy-1.1.12-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for kdepy-1.1.12-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 aea3587396e458b53c63c8a070505bcd7fd7e60756f99d3390ee344e22d08f41
MD5 92c1963a26216fbb6dfc9f1e5e51e144
BLAKE2b-256 9b525ff42853ade0365d4f7a1335c829d037c2b95a24e44db2a781379a8f5e76

See more details on using hashes here.

File details

Details for the file kdepy-1.1.12-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: kdepy-1.1.12-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 262.6 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.8

File hashes

Hashes for kdepy-1.1.12-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 8fd2a55b71e07aac63b8c8614a8f3e44268eabb9d4282e7bb78a11e840b20268
MD5 882756ef34566ae3a3bac2244bdce65c
BLAKE2b-256 027fe6aefab02d2a4402626fa18a7b059802eb7da43939a98b2105ddf6099857

See more details on using hashes here.

File details

Details for the file kdepy-1.1.12-cp39-cp39-win32.whl.

File metadata

  • Download URL: kdepy-1.1.12-cp39-cp39-win32.whl
  • Upload date:
  • Size: 250.2 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.8

File hashes

Hashes for kdepy-1.1.12-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 94b555ec63d953ea3fb3b5a00fe7e7efadd7881cc6fe817551df913d38796de2
MD5 fe374cb76188f0c547ceead309e852f1
BLAKE2b-256 f668765751673c9e18e21695a9787b4b2e20095ea749dc27df9716b7babf0ce1

See more details on using hashes here.

File details

Details for the file kdepy-1.1.12-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kdepy-1.1.12-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3d9a4ffcf155f4fa7e45e3ff33a8436e16a8e405fa8bd610803a697dc0dd6392
MD5 5dedb880dd203ba82f2105ccc83c0f7d
BLAKE2b-256 92078b8bf172b2eb09458801536ec3cdb4a79654ef18c729115f31a9f85ca810

See more details on using hashes here.

File details

Details for the file kdepy-1.1.12-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for kdepy-1.1.12-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6e22ea5a38278e86be531e87da07026a7aaa0450fdf7b8f6e8813ef9c04e5de0
MD5 10599653332e77e1090fc56e0bd2e0bd
BLAKE2b-256 f9a9348cde6a0123f6f09d53119bbb91b687b396f3f1c54093e98a0b6f6e1f26

See more details on using hashes here.

File details

Details for the file kdepy-1.1.12-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for kdepy-1.1.12-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b0cf62dc5a255075a5813965a58ac16b8b1144d538760bccf06ac529720db61e
MD5 6ab85dfe338ae161244d844f9b4a143b
BLAKE2b-256 1bbd8cd77fca66031f1ed236a32686b739c3030d6cf48010a27d43b1b4f68e16

See more details on using hashes here.

File details

Details for the file kdepy-1.1.12-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for kdepy-1.1.12-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 34ba64f462127e2dc6a1de9ae4a742785cc97acf9fc9922a1378e3087e19c494
MD5 74b99ffa06cf74d6439aa31822c9ca6d
BLAKE2b-256 8b2b765a30a636fbe7e87aa9ca96dd500fc8596369fca9157c5963ce31ac35a2

See more details on using hashes here.

File details

Details for the file kdepy-1.1.12-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: kdepy-1.1.12-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 262.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.8

File hashes

Hashes for kdepy-1.1.12-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 3bd8bff8b5d18ccc253c22dcfa6ab1aa8098df62fbb8899fa6d25579f0ff0b8f
MD5 44f5f460e906bd80b342e6a3d6472d4f
BLAKE2b-256 bc86e4c00406ed4beb48fa0ffbdaa92d68f5c45c42163f687595d0bced276780

See more details on using hashes here.

File details

Details for the file kdepy-1.1.12-cp38-cp38-win32.whl.

File metadata

  • Download URL: kdepy-1.1.12-cp38-cp38-win32.whl
  • Upload date:
  • Size: 250.3 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.8

File hashes

Hashes for kdepy-1.1.12-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 0fe3784dd2bfaa4d6278f2fcc5e0140dae0b643f0ad9b15c5bed35d3e368c7a4
MD5 172cf5d79936eda860685e4316829a51
BLAKE2b-256 588055b4b93373b6b25455612b0a773ee82a35e36e564639cb6288b6c7b1d94c

See more details on using hashes here.

File details

Details for the file kdepy-1.1.12-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for kdepy-1.1.12-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 878cfcfefa32dfd464b0a87b2ecc90239ade075528285ba8893b3c559dc6e132
MD5 23e46e39e9a4e7ab5620364787e54aa2
BLAKE2b-256 beadb58b04a98702b0b2822670abb275c8deac5bb5a109bb3891c2e2f0f97a6d

See more details on using hashes here.

File details

Details for the file kdepy-1.1.12-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for kdepy-1.1.12-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 78f319dbaafe44d8583e5f1ff3dcff14124d9718ff5bdf5b38128180fbbe4c06
MD5 b6748f3220bd3bf497adfa10b304440b
BLAKE2b-256 d28197a6b7cd55ce12b9ad87e2bc3e70efc1cd31f4f7952799709b17034c98ac

See more details on using hashes here.

File details

Details for the file kdepy-1.1.12-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for kdepy-1.1.12-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 aaa900fbf3fe66bb30a6e1069bd90940f00a02abc15fd6217b63df2fd07204a5
MD5 86bfad1d2e005c0730752d155bb1029d
BLAKE2b-256 1c617630f2a7949878afde2b5cc9c38f756aa4861016786f0bd29cc2e5c0a53b

See more details on using hashes here.

File details

Details for the file kdepy-1.1.12-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for kdepy-1.1.12-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8f26a6a8deeed57a0f52a35fbf0033acedb5935c3a9ae028209a3758bc45d86e
MD5 476ac6ae26aed1c0270f1ef93405eedd
BLAKE2b-256 23f37175f60932a34678c8f0cab7d33f4d201712c5b01033ea3902cb4402b212

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page