Skip to main content

Implements several boosting algorithms in Python

Project description

KTBoost - A Python Package for Boosting

This Python package implements several boosting algorithms with different combinations of base learners, optimization algorithms, and loss functions.

Description

Concerning base learners, KTboost includes:

  • Trees
  • Reproducing kernel Hilbert space (RKHS) ridge regression functions (i.e., posterior means of Gaussian processes)
  • A combination of the two (i.e., the KTBoost algorithm)

Concerning the optimization step for finding the boosting updates, the package supports:

  • Gradient descent
  • Newton method (if applicable)
  • A hybrid version of the two for trees as base learners

The package implements the following loss functions:

  • Continuous data ("regression"): quadratic loss (L2 loss), absolute error (L1 loss), Huber loss, quantile regression loss, Gamma regression loss, negative Gaussian log-likelihood with both the mean and the standard deviation as functions of features
  • Count data ("regression"): Poisson regression loss
  • (Unorderd) Categorical data ("classification"): logistic regression loss (log loss), exponential loss, cross entropy loss with softmax
  • Mixed continuous-categorical data ("censored regression"): negative Tobit likelihood (i.e., the Grabit model)

Installation

It can be installed using

pip install -U KTBoost

and then loaded using

import KTBoost.KTBoost as KTBoost

Usage and examples

The package re-uses code from scikit-learn and its workflow is very similar to that of scikit-learn.

The two main classes are KTBoost.BoostingClassifier and KTBoost.BoostingRegressor.

The following code example defines models, trains them, and makes predictions.

import KTBoost.KTBoost as KTBoost

################################################
## Define model (see below for more examples) ##
################################################
## Standard tree boosting for regression with quadratic loss and hybrid gradient-Newton updates as in Friedman (2001)
model = KTBoost.BoostingRegressor(loss='ls')


##################
## Train models ##
##################
model.fit(Xtrain,ytrain)


######################
## Make predictions ##
######################
model.predict(Xpred)


#############################
## More examples of models ##
#############################
## Boosted Tobit model, i.e. Grabit model (Sigrist and Hirnschall, 2017), 
## with lower and upper limits at 0 and 100
model = KTBoost.BoostingRegressor(loss='tobit',yl=0,yu=100)
## KTBoost algorithm (combined kernel and tree boosting) for classification with Newton updates
model = KTBoost.BoostingClassifier(loss='deviance',base_learner='combined',
                                    update_step='newton',theta=1)
## Gradient boosting for classification with trees as base learners
model = KTBoost.BoostingClassifier(loss='deviance',update_step='gradient')
## Newton boosting for classification model with trees as base learners
model = KTBoost.BoostingClassifier(loss='deviance',update_step='newton')
## Hybrid gradient-Newton boosting (Friedman, 2001) for classification with 
## trees as base learners (this is the version that scikit-learn implements)
model = KTBoost.BoostingClassifier(loss='deviance',update_step='hybrid')
## Kernel boosting for regression with quadratic loss
model = KTBoost.BoostingRegressor(loss='ls',base_learner='kernel',theta=1)
## Kernel boosting with the Nystroem method and the range parameter theta chosen 
## as the average distance to the 100-nearest neighbors (of the Nystroem samples)
model = KTBoost.BoostingRegressor(loss='ls',base_learner='kernel',nystroem=True,
                                  n_components=1000,theta=None,n_neighbors=100)
## Regression model where both the mean and the standard deviation depend 
## on the covariates / features
model = KTBoost.BoostingRegressor(loss='msr')


#########################
## Feature importances ## (only defined for trees as base learners)
#########################
Xtrain=np.random.rand(1000,10)
ytrain=2*Xtrain[:,0]+2*Xtrain[:,1]+np.random.rand(1000)

model = KTBoost.BoostingRegressor()
model.fit(Xtrain,ytrain)
## Extract feature importances calculated as described in Friedman (2001)
feat_imp = model.feature_importances_

## Alternatively, plot feature importances directly
KTBoost.plot_feature_importances(model=model,feature_names=feature_names,maxFeat=10)


##############################
## Partial dependence plots ## (currently only implemented for trees as base learners)
##############################
from KTBoost.partial_dependence import plot_partial_dependence
import matplotlib.pyplot as plt
features = [0,1,2,3,4,5]
fig, axs = plot_partial_dependence(model,Xtrain,features,percentiles=(0,1),figsize=(8,6))
plt.subplots_adjust(top=0.9)
fig.suptitle('Partial dependence plots')

## Alternatively, get partial dependencies in numerical form
from KTBoost.partial_dependence import partial_dependence
kwargs = dict(X=Xtrain, percentiles=(0, 1))
partial_dependence(model,[0],**kwargs)

Author

Fabio Sigrist

References

  • Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: a statistical view of boosting. The annals of statistics, 28(2), 337-407.
  • Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of statistics, 1189-1232.
  • Sigrist, F. (2018). Gradient and Newton Boosting for Classification and Regression. arXiv preprint arXiv:1808.03064.
  • Sigrist, F., & Hirnschall, C. (2017). Grabit: Gradient Tree Boosted Tobit Models for Default Prediction. arXiv preprint arXiv:1711.08695.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

KTBoost-0.0.19.tar.gz (53.0 kB view details)

Uploaded Source

Built Distribution

KTBoost-0.0.19-py2-none-any.whl (57.8 kB view details)

Uploaded Python 2

File details

Details for the file KTBoost-0.0.19.tar.gz.

File metadata

  • Download URL: KTBoost-0.0.19.tar.gz
  • Upload date:
  • Size: 53.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/2.7.14

File hashes

Hashes for KTBoost-0.0.19.tar.gz
Algorithm Hash digest
SHA256 2ae3579250e7030b2c3dbdfd990e0b609b308179f621b5527aea83fbc2220c58
MD5 0b695b6f0ff1f9cbeae122716f5f1c11
BLAKE2b-256 5f940b30c009bdf2b6d2d4184f408004750b77e36bcddfa6811677c0953c3db7

See more details on using hashes here.

File details

Details for the file KTBoost-0.0.19-py2-none-any.whl.

File metadata

  • Download URL: KTBoost-0.0.19-py2-none-any.whl
  • Upload date:
  • Size: 57.8 kB
  • Tags: Python 2
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/2.7.14

File hashes

Hashes for KTBoost-0.0.19-py2-none-any.whl
Algorithm Hash digest
SHA256 64aaa9d5a028ddbfd295cc202f7ea6cb9a04e71cb10f1fc3eae3bce9660d00d9
MD5 fdd32022b42f687f8d268f505567e1b4
BLAKE2b-256 e446a25cab8b8f0c86c256a930bb1382b4f656da98d0f7d9f3d2d30d87ddc10d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page