Skip to main content

KRATOS Multiphysics ("Kratos") is a framework for building parallel, multi-disciplinary simulation software, aiming at modularity, extensibility, and high performance. Kratos is written in C++, and counts with an extensive Python interface.

Project description

Statistics Application

Statistics application consist of widely used methods to calculate statistics in various containers of KratosMultiphysics. There are mainly two groups of statistical methods namely Spatial and Temporal. Spatial methods calculate statistics on spatial containers and output the values whenever they are called. Temporal methods calculate statistics on the fly in a transient simulation. All the temporal methods gurantee that, the resultant statistics will be same as the ones if one calculates accumulating all the data upto that time instance and calculate the same statistics. All of these methods in each group is OpenMP and MPI compatible, and tested.

Following table summarize capabilities of Statistics Application.

Statistical Methods Norm Types Spatial Domain Temporal Domain Data types
Sum Value Spatial methods Temporal methods Double
Mean Magnitude Spatial containers Temporal containers Array 3D
Root mean square Euclidean nodal_historical nodal_historical_historical Vector
Variance Infinity nodal_non_historical nodal_historical_non_historical Matrix
Min P-Norm condition_non_historical nodal_non_historical
Max Lpq-Norm element_non_historical element_non_historical
Median Frobenius Spatial statistics process condition_non_historical
Distribution Trace Temporal statistics process
Norm methods Index
Component

JSON Examples

If you prefer to use statistics of a simulation using StatisticsApplication, there is spatial_statistics_process for spatial statistics calculations and temporal_statistics_process for temporal statistics. These processes can be included via JSON settings under auxiliary_processes.

Spatial statistics process examples

Following example illustrates different methods used in different containers with different norms. input_variable_settings holds an array of methods for specified containers, specified norm and specified variables. They can be customized for your requirement. output_settings holds information about how the output should be handled.

{
                "kratos_module" : "KratosMultiphysics.StatisticsApplication",
                "python_module" : "spatial_statistics_process",
                "Parameters" : {
                    "model_part_name" : "test_model_part",
                    "input_variable_settings" : [
                        {
                            "method_name"    : "sum",
                            "norm_type"      : "none",
                            "container"      : "nodal_historical",
                            "variable_names" : ["PRESSURE", "VELOCITY"],
                            "method_settings": {}
                        },
                        {
                            "method_name"    : "mean",
                            "norm_type"      : "none",
                            "container"      : "nodal_non_historical",
                            "variable_names" : ["PRESSURE", "VELOCITY"],
                            "method_settings": {}
                        },
                        {
                            "method_name"    : "variance",
                            "norm_type"      : "none",
                            "container"      : "element_non_historical",
                            "variable_names" : ["PRESSURE", "VELOCITY"],
                            "method_settings": {}
                        },
                        {
                            "method_name"    : "rootmeansquare",
                            "norm_type"      : "none",
                            "container"      : "condition_non_historical",
                            "variable_names" : ["PRESSURE", "VELOCITY"],
                            "method_settings": {}
                        },
                        {
                            "method_name"    : "sum",
                            "norm_type"      : "magnitude",
                            "container"      : "nodal_historical",
                            "variable_names" : ["PRESSURE", "VELOCITY", "LOAD_MESHES", "GREEN_LAGRANGE_STRAIN_TENSOR"],
                            "method_settings": {}
                        },
                        {
                            "method_name"    : "mean",
                            "norm_type"      : "pnorm_2.5",
                            "container"      : "nodal_non_historical",
                            "variable_names" : ["VELOCITY", "LOAD_MESHES", "GREEN_LAGRANGE_STRAIN_TENSOR"],
                            "method_settings": {}
                        },
                        {
                            "method_name"    : "variance",
                            "norm_type"      : "component_x",
                            "container"      : "condition_non_historical",
                            "variable_names" : ["VELOCITY"],
                            "method_settings": {}
                        },
                        {
                            "method_name"    : "rootmeansquare",
                            "norm_type"      : "index_3",
                            "container"      : "nodal_non_historical",
                            "variable_names" : ["LOAD_MESHES"],
                            "method_settings": {}
                        },
                        {
                            "method_name"    : "min",
                            "norm_type"      : "frobenius",
                            "container"      : "nodal_non_historical",
                            "variable_names" : ["GREEN_LAGRANGE_STRAIN_TENSOR"],
                            "method_settings": {}
                        }
                    ],
                    "output_settings" : {
                        "output_control_variable": "STEP",
                        "output_time_interval"   : 1,
                        "write_kratos_version"   : false,
                        "write_time_stamp"       : false,
                        "output_file_settings"   : {
                            "file_name"  : "<model_part_name>_<container>_<norm_type>_<method_name>.dat",
                            "output_path": "spatial_statistics_process",
                            "write_buffer_size" : -1
                        }
                    }
                }
            }

Temporal statistics process example

Following is an example on how to use temporal_statistics_process in json. The output variables data type should be matched with the input variables order and the data type for "norm_type" = "none". If "norm_type" != "none", then output variables should be scalars. If "container" = "nodal_historical_historical" is used as the container type, then output variables should be added to NodalSolutionStepVariables list in Kratos since this container type outputs temporal statistics variables to nodal historical container. This json settings also can be added to auxiliary_processes list.

For details about all the available statistical methods, norm_types, etc, please refer to rest of the README.md file.

        {
            "kratos_module": "KratosMultiphysics.StatisticsApplication",
            "python_module": "temporal_statistics_process",
            "Parameters": {
                "model_part_name": "FluidModelPart.fluid_computational_model_part",
                "input_variable_settings": [
                    {
                        "method_name": "variance",
                        "norm_type": "none",
                        "container": "nodal_historical_non_historical",
                        "echo_level": 1,
                        "method_settings": {
                            "input_variables": [
                                "VELOCITY",
                                "PRESSURE"
                            ],
                            "output_mean_variables": [
                                "VECTOR_3D_MEAN",
                                "SCALAR_MEAN"
                            ],
                            "output_variance_variables": [
                                "VECTOR_3D_VARIANCE",
                                "SCALAR_VARIANCE"
                            ]
                        }
                    }
                ],
                "statistics_start_point_control_variable_name": "TIME",
                "statistics_start_point_control_value": 2.5
            }
        }

Method definitions

There are two types of methods under each Spatial and Temporal method groups. They are namely Value and Norm methods. In these methods, i index refers to spatial domain element index, and k index refers to time step.

Value methods

Sum

In the case of spatial domain, it adds up all the variable values for a given container and returns summed up value as shown in following equation. xi is the ith element's variable value of the corresponding container. Result will have the same type as the type of the variable specified by the user

Following is an example of summation of non historical VELOCITY over the whole model part's nodes

import KratosMultiphysics as Kratos
import KratosMultiphysics.StatisticsApplication as KratosStats
model = Kratos.Model()
model_part = model.CreateModelPart("test_model_part")
sum = KratosStats.SpatialMethods.NonHistorical.Nodes.ValueMethods.Sum(model_part, Kratos.VELOCITY)

In the case of temporal domain, Sum methods is the time integrated quantity for a specific variable. It will be stored each element under user specified variable and a user specified container. xi is the ith element's variable value of the corresponding container. Result will have the same type as the type of the variable specified by the user.

Following is an example of integration calculation of non historical velocity. Input variable is node's non-historical container's VELOCITY and output variable is same containers DISPLACEMENT where integrated value will be stored for each node. The 0 represents echo level for this method object. Blank "" indicates that value method is used.

import KratosMultiphysics as Kratos
import KratosMultiphysics.StatisticsApplication as KratosStats
model = Kratos.Model()
model_part = model.CreateModelPart("test_model_part")
sum_method = KratosStats.TemporalMethods.NonHistorical.Nodes.ValueMethods.Sum.Array(model_part, "", Kratos.VELOCITY, 0, Kratos.DISPLACEMENT)
integration_starting_time = 2.0
sum_method.InitializeStatisticsMethod(integration_starting_time)
for t in range(3, 6):
    sum_method.CalculateStatistics()

Mean

In the case of spatial domain, it calculates mean of a given variable for a given container and returns it as shown in following equation. xi is the ith element's variable value of the corresponding container. Result will have the same type as the type of the variable specified by the user. (If it has higher dimension than a scalar, mean of each dimension will be calculated seperately resulting with a mean having same dimension as the input dimension)

Following is an example of mean calculation of non historical VELOCITY over the whole model part's nodes

import KratosMultiphysics as Kratos
import KratosMultiphysics.StatisticsApplication as KratosStats
model = Kratos.Model()
model_part = model.CreateModelPart("test_model_part")
mean = KratosStats.SpatialMethods.NonHistorical.Nodes.ValueMethods.Mean(model_part, Kratos.VELOCITY)

In the case of temporal domain, Mean methods is the time integrated quantity's mean for a specific variable. It will be stored each element under user specified variable and a user specified container. xi is the ith element's variable value of the corresponding container. Result will have the same type as the type of the variable specified by the user preserving the dimensionality as in the spatial case.

Following is an example of mean calculation of non historical velocity. Input variable is node's non-historical container's VELOCITY and output variable is same containers VECTOR_3D_MEAN where mean will be stored for each node. The 0 represents echo level for this method object. Blank "" indicates that value method is used.

import KratosMultiphysics as Kratos
import KratosMultiphysics.StatisticsApplication as KratosStats
model = Kratos.Model()
model_part = model.CreateModelPart("test_model_part")
mean_method = KratosStats.TemporalMethods.NonHistorical.Nodes.ValueMethods.Mean.Array(model_part, "", Kratos.VELOCITY, 0, KratosStats.VECTOR_3D_MEAN)
integration_starting_time = 2.0
mean_method.InitializeStatisticsMethod(integration_starting_time)
for t in range(3, 6):
    mean_method.CalculateStatistics()

Root mean square

In the case of spatial domain, it calculates root mean square of a given variable for a given container and returns it as shown in following equation. xi is the ith element's variable value of the corresponding container. Result will have the same type as the type of the variable specified by the user. (If it has higher dimension than a scalar, root mean square of each dimension will be calculated seperately resulting with a mean having same dimension as the input dimension)

Following is an example of root mean square calculation of non historical VELOCITY over the whole model part's nodes

import KratosMultiphysics as Kratos
import KratosMultiphysics.StatisticsApplication as KratosStats
model = Kratos.Model()
model_part = model.CreateModelPart("test_model_part")
rms = KratosStats.SpatialMethods.NonHistorical.Nodes.ValueMethods.RootMeanSquare(model_part, Kratos.VELOCITY)

In the case of temporal domain, Root Mean Square methods is the time integrated quantity's root mean square for a specific variable. It will be stored each element under user specified variable and a user specified container. xi is the ith element's variable value of the corresponding container. Result will have the same type as the type of the variable specified by the user preserving the dimensionality as in the spatial case.

Following is an example of root mean square calculation of non historical velocity. Input variable is node's non-historical container's VELOCITY and output variable is same containers VECTOR_3D_MEAN where root mean square value will be stored for each node. The 0 represents echo level for this method object. Blank "" indicates that value method is used.

import KratosMultiphysics as Kratos
import KratosMultiphysics.StatisticsApplication as KratosStats
model = Kratos.Model()
model_part = model.CreateModelPart("test_model_part")
rms_method = KratosStats.TemporalMethods.NonHistorical.Nodes.ValueMethods.RootMeanSquare.Array(model_part, "", Kratos.VELOCITY, 0, KratosStats.VECTOR_3D_MEAN)
integration_starting_time = 2.0
rms_method.InitializeStatisticsMethod(integration_starting_time)
for t in range(3, 6):
    rms_method.CalculateStatistics()

Variance

In the case of spatial domain, it calculates variance of a given variable for a given container and returns mean and variance as shown in following equations. xi is the ith element's variable value of the corresponding container. Results will have the same type as the type of the variable specified by the user. (If it has higher dimension than a scalar, mean of each dimension will be calculated seperately resulting with a mean having same dimension as the input dimension)

Following is an example of variance calculation of non historical VELOCITY over the whole model part's nodes

import KratosMultiphysics as Kratos
import KratosMultiphysics.StatisticsApplication as KratosStats
model = Kratos.Model()
model_part = model.CreateModelPart("test_model_part")
mean, variance = KratosStats.SpatialMethods.NonHistorical.Nodes.ValueMethods.Variance(model_part, Kratos.VELOCITY)

In the case of temporal domain, Variance method is the time integrated quantity's variance for a specific variable. Mean and variance will be stored each element under user specified variables and a user specified container. xi is the ith element's variable value of the corresponding container. Results will have the same type as the type of the variable specified by the user preserving the dimensionality as in the spatial case.

Following is an example of root mean square calculation of non historical velocity. Input variable is node's non-historical container's VELOCITY and output variable VECTOR_3D_MEAN will store mean and VECTOR_3D_VARIANCE will store variance in same container for each node. The 0 represents echo level for this method object. Blank "" indicates that value method is used.

import KratosMultiphysics as Kratos
import KratosMultiphysics.StatisticsApplication as KratosStats
model = Kratos.Model()
model_part = model.CreateModelPart("test_model_part")
variance_method = KratosStats.TemporalMethods.NonHistorical.Nodes.ValueMethods.Variance.Array(model_part, "", Kratos.VELOCITY, 0, KratosStats.VECTOR_3D_MEAN, KratosStats.VECTOR_3D_VARIANCE)
integration_starting_time = 2.0
variance_method.InitializeStatisticsMethod(integration_starting_time)
for t in range(3, 6):
    variance_method.CalculateStatistics()

Min

In the case of spatial domain, it returns minimum of a given variable's norm for a given container, and the corresponding items id. xi is the ith element's variable value of the corresponding container. Results will be double and integer, irrespective of the input type, since higher dimensional variable types will be reduced to scalars by the use of norms.

Following is an example of min method of non historical VELOCITY's magnitude over the whole model part's nodes. It returns a tuple, first argument being the minimum, and the second argument being the id of the node where the minimum is found.

import KratosMultiphysics as Kratos
import KratosMultiphysics.StatisticsApplication as KratosStats
model = Kratos.Model()
model_part = model.CreateModelPart("test_model_part")
min_value, min_id = KratosStats.SpatialMethods.NonHistorical.Nodes.NormMethods.Min(model_part, Kratos.VELOCITY, "magnitude")

In the case of temporal domain, Min method returns minimum value in the temporal domain, and the time minimum is found. Minimum and its occurring time will be stored each element under user specified variables and a user specified container. xk is the kth time step element's variable value of the corresponding container. Results will have the same type as the type of the variable specified by the user preserving the dimensionality as in the spatial case.

Following is an example of min method in non historical velocity. Input variable is node's non-historical container's VELOCITY and output variable VECTOR_3D_NORM will store minimum and TIME will store the time minimum occured for each node. The 0 represents echo level for this method object. "magnitude" indicates that magnitude norm is used.

import KratosMultiphysics as Kratos
import KratosMultiphysics.StatisticsApplication as KratosStats
model = Kratos.Model()
model_part = model.CreateModelPart("test_model_part")
min_method = KratosStats.TemporalMethods.NonHistorical.Nodes.NormMethods.Min.Array(model_part, "magnitude", Kratos.VELOCITY, 0, KratosStats.VECTOR_3D_NORM, Kratos.TIME)
integration_starting_time = 2.0
min_method.InitializeStatisticsMethod(integration_starting_time)
for t in range(3, 6):
    min_method.CalculateStatistics()

Max

In the case of spatial domain, it returns maximum of a given variable's norm for a given container, and the corresponding items id. xi is the ith element's variable value of the corresponding container. Results will be double and integer, irrespective of the input type, since higher dimensional variable types will be reduced to scalars by the use of norms.

Following is an example of max method of non historical VELOCITY's magnitude over the whole model part's nodes. It returns a tuple, first argument being the maximum, and the second argument being the id of the node where the maximum is found.

import KratosMultiphysics as Kratos
import KratosMultiphysics.StatisticsApplication as KratosStats
model = Kratos.Model()
model_part = model.CreateModelPart("test_model_part")
max_value, max_id = KratosStats.SpatialMethods.NonHistorical.Nodes.NormMethods.Max(model_part, Kratos.VELOCITY, "magnitude")

In the case of temporal domain, Max method returns maximum value in the temporal domain, and the time maximum is found. Maximum and its occurring time will be stored each element under user specified variables and a user specified container. xk is the kth time step element's variable value of the corresponding container. Results will have the same type as the type of the variable specified by the user preserving the dimensionality as in the spatial case.

Following is an example of max method in non historical velocity. Input variable is node's non-historical container's VELOCITY and output variable VECTOR_3D_NORM will store maximum and TIME will store the time maximum occured for each node. The 0 represents echo level for this method object. "magnitude" indicates that magnitude norm is used.

import KratosMultiphysics as Kratos
import KratosMultiphysics.StatisticsApplication as KratosStats
model = Kratos.Model()
model_part = model.CreateModelPart("test_model_part")
max_method = KratosStats.TemporalMethods.NonHistorical.Nodes.NormMethods.Max.Array(model_part, "magnitude", Kratos.VELOCITY, 0, KratosStats.VECTOR_3D_NORM, Kratos.TIME)
integration_starting_time = 2.0
max_method.InitializeStatisticsMethod(integration_starting_time)
for t in range(3, 6):
    max_method.CalculateStatistics()

Median

Median returns the median value in spatial domain of a given variable's norm for a given container. xi is the ith element's variable value of the corresponding container. Results will be double value type, irrespective of the input type, since higher dimensional variable types will be reduced to scalars by the use of norms.

Following is an example of median method of non historical VELOCITY's magnitude over the whole model part's nodes. It returns a double which is the median.

import KratosMultiphysics as Kratos
import KratosMultiphysics.StatisticsApplication as KratosStats
model = Kratos.Model()
model_part = model.CreateModelPart("test_model_part")
median_value = KratosStats.SpatialMethods.NonHistorical.Nodes.NormMethods.Median(model_part, Kratos.VELOCITY, "magnitude")

Distribution

Distribution methods calculates distribution of a given variable with respect to given norm in a given container in spatial domain. xi is the ith element's variable value of the corresponding container. Result will be a tuple with followings in the same order:

  1. min in the domain or user specified min value
  2. max in the domain or user specified min value
  3. group limits of the distribution (only upper limit) (double array)
  4. number of occurences of items within each group (int array)
  5. percentage distribution of number of occurences of items within each group (double array)
  6. Each group's seperate means
  7. Eash group's seperate variances

This method requires followings as the parameters as a object of Kratos.Parameters, if nothing is provided, then followings are assumed as defaults.

{
    "number_of_value_groups" : 10,
    "min_value"              : "min",
    "max_value"              : "max"
}

In here, "min_value" can either be "min" or a double value. In the case of a double, it will be used as the minimum when creating groups to identify distribution. "max_value" also can either be "max" of double value, which will determine the maximum value when creating the groups. This will create 2 additional groups to represent values below the specified "min_value" and "max_value" apart from the "number_of_value_groups" specified by the user.

Following is an example of median method of non historical VELOCITY's magnitude over the whole model part's nodes.

import KratosMultiphysics as Kratos
import KratosMultiphysics.StatisticsApplication as KratosStats
model = Kratos.Model()
model_part = model.CreateModelPart("test_model_part")
min_value, max_value, group_upper_values, group_histogram, group_percentage_distribution, group_means, group_variances = KratosStats.SpatialMethods.NonHistorical.Nodes.NormMethods.Distribution(model_part, Kratos.VELOCITY, "magnitude")

Norm methods

All of the value methods mentioned before supports norm version of it, in these methods, higher dimensional values are transformed in to scalar values by a use specified norm, and then statistics are calculated based on the chosen method. Supported norm types may differ based on the variable data type being used. There are few methods, which only supports norm methods. Following table summarize availability of value and norm methods.

Statistical Methods Value Method Norm Method
Sum [x] [x]
Mean [x] [x]
Root mean square [x] [x]
Variance [x] [x]
Min [x]
Max [x]
Median [x]
Distribution [x]

Following example shows variance method, under value category and norm category for nodal non historical velocity. Norm method uses "magnitude" as the norm to reduce VELOCITY to a scalar value. value_mean and value_variance will be of Array 3D type, whereas norm_mean and norm_variance will be of Double type.

import KratosMultiphysics as Kratos
import KratosMultiphysics.StatisticsApplication as KratosStats
model = Kratos.Model()
model_part = model.CreateModelPart("test_model_part")
value_mean, value_variance = KratosStats.SpatialMethods.NonHistorical.Nodes.ValueMethods.Variance(model_part, Kratos.VELOCITY)
norm_mean, norm_variance = KratosStats.SpatialMethods.NonHistorical.Nodes.NormMethods.Variance(model_part, Kratos.VELOCITY, "magnitude")

Norm definitions

Few different norms are predefined in this application. Following table summarize

Double Array 3D Vector Matrix
Value [x]
Magnitude [x] [x] [x] [x]
Euclidean [x] [x]
Infinity [x] [x] [x]
P-Norm [x] [x] [x]
Lpq-Norm [x]
Frobenius [x]
Trace [x]
Index [x] [x]
Component [x]

Value

This returns the exact value. Only available for Double type variables.

Magnitude

This returns the second norm of the variable.

  1. For a Double type, it returns the absolute value.
  2. For a Array 3D type, it returns the magnitude of the 3D vector.
  3. For a Vector type, it returns root square sum of the vector.
  4. For a Matrix type, it returns the frobenius norm.

Euclidean

This again returns the second norm of the variable for following variable types.

  1. For a Array 3D type, it returns the magnitude of the 3D vector.
  2. For a Vector type, it returns root square sum of the vector.

Frobenius

This is only available for Matrix data type variables only. Following equation illustrates the norm, where A is the matrix and aij is the ith row, jth column value.

Infinity

This is infinity (i.e. max norm) which is available for Array 3D, Vector and Matrix type. For an Array 3D variable following equation is used.

For a Vector variable following equation is used.

For a Matrix variable following equation is used.

Trace

Trace is only for Matrix type variables. If the given matrix is not squre, an error is thrown.

P norm

P norm is applicable for Array 3D, Vector and Matrix variables. The p-norm is used as pnorm_p where, p represents the value to be used as p in the p-norm equation given below. p should be greater than or equal to 1.0.

For Array 3D and Vector:

For Matrix:

Lpq norm

This norm is only applicable to Matrix type variables.

Index based

Index based norms are available for both Vector and Matrix based variable types. index_i is used for Vector variables, where i represents the index of the vector to be used as the scalar representing a corresponding vector. index_(i,j) is used for Matrix variables, where i represents the row index and j represents the column index of the matrix value which to be used as the scalar representation of the given matrix.

Component based

Component based norms are available only for Array 3D type variables. component_x represents the x component of 3D variable, component_y represents y component, component_z represents the z component.

Spatial methods

All the spatial statistical methods can be found in the SpatialMethods submodule. ValueMethods container will contain all available spatial value methods, and NormMethods container will contain all available norm methods.

Following example illustrates all the available value methods executed on nodal non historical variable velocity.

import KratosMultiphysics as Kratos
import KratosMultiphysics.StatisticsApplication as KratosStats
model = Kratos.Model()
model_part = model.CreateModelPart("test_model_part")
sum_value = KratosStats.SpatialMethods.NonHistorical.Nodes.ValueMethods.Sum(model_part, Kratos.VELOCITY)
mean_value = KratosStats.SpatialMethods.NonHistorical.Nodes.ValueMethods.Mean(model_part, Kratos.VELOCITY)
rms_value = KratosStats.SpatialMethods.NonHistorical.Nodes.ValueMethods.RootMeanSquare(model_part, Kratos.VELOCITY)
mean_value, variance_value = KratosStats.SpatialMethods.NonHistorical.Nodes.ValueMethods.Variance(model_part, Kratos.VELOCITY)

Following example illustrates all the available norm methods executed on nodal non historical variable velocity's magnitude.

import KratosMultiphysics as Kratos
import KratosMultiphysics.StatisticsApplication as KratosStats
model = Kratos.Model()
model_part = model.CreateModelPart("test_model_part")
sum_norm = KratosStats.SpatialMethods.NonHistorical.Nodes.NormMethods.Sum(model_part, Kratos.VELOCITY, "magnitude")
mean_norm = KratosStats.SpatialMethods.NonHistorical.Nodes.NormMethods.Mean(model_part, Kratos.VELOCITY, "magnitude")
rms_norm = KratosStats.SpatialMethods.NonHistorical.Nodes.NormMethods.RootMeanSquare(model_part, Kratos.VELOCITY, "magnitude")
mean_norm, variance_norm = KratosStats.SpatialMethods.NonHistorical.Nodes.NormMethods.Variance(model_part, Kratos.VELOCITY, "magnitude")
min_norm, min_norm_id = KratosStats.SpatialMethods.NonHistorical.Nodes.NormMethods.Min(model_part, Kratos.VELOCITY, "magnitude")
max_norm, max_norm_id = KratosStats.SpatialMethods.NonHistorical.Nodes.NormMethods.Max(model_part, Kratos.VELOCITY, "magnitude")
min_norm, max_norm, group_upper_norms, group_histogram, group_percentage_distribution = KratosStats.SpatialMethods.NonHistorical.Nodes.NormMethods.Distribution(model_part, Kratos.VELOCITY, "magnitude")

Spatial containers

Four different types of containers are supported for spatial methods.

  1. nodal_historical
  2. nodal_non_historical
  3. condition_non_historical
  4. element_non_historical

Spatial nodal historical

Nodal historical containers methods can be accessed through Historical submodule in SpatialMethods. This calculates chosen statistics of the variable in the nodal historical data. Following example illustrates use of value and norm methods.

import KratosMultiphysics as Kratos
import KratosMultiphysics.StatisticsApplication as KratosStats
model = Kratos.Model()
model_part = model.CreateModelPart("test_model_part")
model_part.AddNodalSolutionStepVariable(Kratos.VELOCITY)
sum_value = KratosStats.SpatialMethods.Historical.ValueMethods.Sum(model_part, Kratos.VELOCITY)
sum_norm = KratosStats.SpatialMethods.Historical.NormMethods.Sum(model_part, Kratos.VELOCITY, "magnitude")

Spatial nodal non historical

Nodal non historical containers methods can be accessed through NonHistorical.Nodes submodule in SpatialMethods. This calculates chosen statistics of the variable in the nodal non historical data. Following example illustrates use of value and norm methods.

import KratosMultiphysics as Kratos
import KratosMultiphysics.StatisticsApplication as KratosStats
model = Kratos.Model()
model_part = model.CreateModelPart("test_model_part")
sum_value = KratosStats.SpatialMethods.NonHistorical.Nodes.ValueMethods.Sum(model_part, Kratos.VELOCITY)
sum_norm = KratosStats.SpatialMethods.NonHistorical.Nodes.NormMethods.Sum(model_part, Kratos.VELOCITY, "magnitude")

Spatial condition non historical

Condition non historical containers methods can be accessed through NonHistorical.Conditions submodule in SpatialMethods. This calculates chosen statistics of the variable in the condition non historical data. Following example illustrates use of value and norm methods.

import KratosMultiphysics as Kratos
import KratosMultiphysics.StatisticsApplication as KratosStats
model = Kratos.Model()
model_part = model.CreateModelPart("test_model_part")
sum_value = KratosStats.SpatialMethods.NonHistorical.Conditions.ValueMethods.Sum(model_part, Kratos.VELOCITY)
sum_norm = KratosStats.SpatialMethods.NonHistorical.Conditions.NormMethods.Sum(model_part, Kratos.VELOCITY, "magnitude")

Spatial element non historical

Element non historical containers methods can be accessed through NonHistorical.Elements submodule in SpatialMethods. This calculates chosen statistics of the variable in the element non historical data. Following example illustrates use of value and norm methods.

import KratosMultiphysics as Kratos
import KratosMultiphysics.StatisticsApplication as KratosStats
model = Kratos.Model()
model_part = model.CreateModelPart("test_model_part")
sum_value = KratosStats.SpatialMethods.NonHistorical.Elements.ValueMethods.Sum(model_part, Kratos.VELOCITY)
sum_norm = KratosStats.SpatialMethods.NonHistorical.Elements.NormMethods.Sum(model_part, Kratos.VELOCITY, "magnitude")

Spatial statistics process

This is a seperate process, which can be included in the json file as an auxiliary process. Followings are the defaults used in this process.

{
    "model_part_name" : "PLEASE_SPECIFY_MODEL_PART_NAME",
    "input_variable_settings" : [
        {
            "method_name"    : "sum",
            "norm_type"      : "none",
            "container"      : "nodal_historical",
            "variable_names" : [],
            "method_settings": {}
        }
    ],
    "output_settings" : {
        "output_control_variable": "STEP",
        "output_time_interval"   : 1,
        "write_kratos_version"   : true,
        "write_time_stamp"       : true,
        "output_file_settings"   : {
            "file_name"  : "<model_part_name>_<container>_<norm_type>_<method_name>.dat",
            "output_path": "spatial_statistics_output",
            "write_buffer_size" : -1
        }
    }
}

model_part_name indicates which model part to be operated on for statistics calculation. input_variable_settings contains list of statistics and/or norm methods along with their acting containers of the model part. method_name is the statistics method name (always everything is in lower case). norm_type is the applied norm, none means, value methods are used, otherwise specified norm is used. container is the container to be specified for statistical value calculation. method_settings is used to pass additional information required by statistics method such as in Distribution method. Output is written to a file in the format given at file_name, under the folder folder_name. This process can be used, if someone prefers not to modify their python scripts to calculate statistics as mentioned in the previous sections

Temporal methods

All the temporal methods are available through TemporalMethods submodule under StatisticsApplication. In the case of temporal methods, seperate objects needs to be created for each input variable for different type of variables as shown in following example for nodal non historical data container value methods.

import KratosMultiphysics as Kratos
import KratosMultiphysics.StatisticsApplication as KratosStats
model = Kratos.Model()
model_part = model.CreateModelPart("test_model_part")
sum_double_method = KratosStats.TemporalMethods.NonHistorical.Nodes.ValueMethods.Sum.Double(model_part, "", Kratos.PRESSURE, 0, Kratos.DENSITY)
sum_array_method = KratosStats.TemporalMethods.NonHistorical.Nodes.ValueMethods.Sum.Array(model_part, "", Kratos.VELOCITY, 0, Kratos.DISPLACEMENT)
sum_vector_method = KratosStats.TemporalMethods.NonHistorical.Nodes.ValueMethods.Sum.Vector(model_part, "", Kratos.LOAD_MESHES, 0, Kratos.MATERIAL_PARAMETERS)
sum_matrix_method = KratosStats.TemporalMethods.NonHistorical.Nodes.ValueMethods.Sum.Matrix(model_part, "", Kratos.GREEN_LAGRANGE_STRAIN_TENSOR, 0, Kratos.CAUCHY_STRESS_TENSOR)

In order to remove the hassle of using different names (such as Double, Array...), one can get the advantage of common methods available in each of the containers. Following example will create the same objects as in the previous example in one go using simplified sum method.

import KratosMultiphysics as Kratos
import KratosMultiphysics.StatisticsApplication as KratosStats
model = Kratos.Model()
model_part = model.CreateModelPart("test_model_part")
params = Kratos.Parameters(r"""
{
    "input_variables" : ["PRESSURE", "VELOCITY", "LOAD_MESHES", "GREEN_LAGRANGE_STRAIN_TENSOR"],
    "output_variables" : ["DENSITY", "DISPLACEMENT", "MATERIAL_PARAMETERS", "CAUCHY_STRESS_TENSOR"]
}""")
sum_methods = KratosStats.TemporalMethods.NonHistorical.Nodes.Sum(model_part, "none", 0, params)

For Sum, Mean, RootMeanSquare methods, above Kratos.Parameters object keys will remain the same. But for Variance method following json parameters are used.

{
    "input_variables"           : [],
    "output_mean_variables"     : [],
    "output_variance_variables" : []
}

When using these simplified, one needs to take care of compatibility of input and output variables depending on the method and norm type, otherwise runtime errors will be thrown.

Temporal containers

In the temporal domain, there are five different containers available for user to calculate temporal statistics. They are,

  1. nodal_historical_historical
  2. nodal_historical_non_historical
  3. nodal_non_historical
  4. condition_non_historical
  5. element_non_historical

Temporal nodal historical historical

In this container, statistics are calculated on user specified variables in the nodal historical container and, output is also written to the nodal historical container. Example is given below.

import KratosMultiphysics as Kratos
import KratosMultiphysics.StatisticsApplication as KratosStats
model = Kratos.Model()
model_part = model.CreateModelPart("test_model_part")
sum_value = KratosStats.TemporalMethods.Historical.HistoricalOutput.ValueMethods.Sum.Array(model_part, "", Kratos.VELOCITY, 0, Kratos.DISPLACEMENT)
sum_norm = KratosStats.TemporalMethods.Historical.HistoricalOutput.NormMethods.Sum.Array(model_part, "magnitude", Kratos.VELOCITY, 0, Kratos.DENSITY)

Temporal nodal historical non historical

In this container, statistics are calculated on user specified variables in the nodal historical container and, output is also written to the nodal non historical container. Example is given below.

import KratosMultiphysics as Kratos
import KratosMultiphysics.StatisticsApplication as KratosStats
model = Kratos.Model()
model_part = model.CreateModelPart("test_model_part")
sum_value = KratosStats.TemporalMethods.Historical.NonHistoricalOutput.ValueMethods.Sum.Array(model_part, "", Kratos.VELOCITY, 0, Kratos.DISPLACEMENT)
sum_norm = KratosStats.TemporalMethods.Historical.NonHistoricalOutput.NormMethods.Sum.Array(model_part, "magnitude", Kratos.VELOCITY, 0, Kratos.DENSITY)

Temporal nodal non historical

In this container, statistics are calculated on user specified variables in the nodal non historical container and, output is also written to the nodal non historical container. Example is given below.

import KratosMultiphysics as Kratos
import KratosMultiphysics.StatisticsApplication as KratosStats
model = Kratos.Model()
model_part = model.CreateModelPart("test_model_part")
sum_value = KratosStats.TemporalMethods.NonHistorical.Nodes.ValueMethods.Sum.Array(model_part, "", Kratos.VELOCITY, 0, Kratos.DISPLACEMENT)
sum_norm = KratosStats.TemporalMethods.NonHistorical.Nodes.NormMethods.Sum.Array(model_part, "magnitude", Kratos.VELOCITY, 0, Kratos.DENSITY)

Temporal condition non historical

In this container, statistics are calculated on user specified variables in the condition non historical container and, output is also written to the condition non historical container. Example is given below.

import KratosMultiphysics as Kratos
import KratosMultiphysics.StatisticsApplication as KratosStats
model = Kratos.Model()
model_part = model.CreateModelPart("test_model_part")
sum_value = KratosStats.TemporalMethods.NonHistorical.Conditions.ValueMethods.Sum.Array(model_part, "", Kratos.VELOCITY, 0, Kratos.DISPLACEMENT)
sum_norm = KratosStats.TemporalMethods.NonHistorical.Conditions.NormMethods.Sum.Array(model_part, "magnitude", Kratos.VELOCITY, 0, Kratos.DENSITY)

Temporal element non historical

In this container, statistics are calculated on user specified variables in the element non historical container and, output is also written to the element non historical container. Example is given below.

import KratosMultiphysics as Kratos
import KratosMultiphysics.StatisticsApplication as KratosStats
model = Kratos.Model()
model_part = model.CreateModelPart("test_model_part")
sum_value = KratosStats.TemporalMethods.NonHistorical.Elements.ValueMethods.Sum.Array(model_part, "", Kratos.VELOCITY, 0, Kratos.DISPLACEMENT)
sum_norm = KratosStats.TemporalMethods.NonHistorical.Elements.NormMethods.Sum.Array(model_part, "magnitude", Kratos.VELOCITY, 0, Kratos.DENSITY)

Temporal statistics process

This is a seperate process, which can be included in the json file as an auxiliary process. Followings are the defaults used in this process.

    "model_part_name" : "PLEASE_SPECIFY_MODEL_PART_NAME",
    "input_variable_settings" : [
        {
            "method_name"     : "sum",
            "norm_type"       : "none",
            "container"       : "nodal_historical_non_historical",
            "echo_level"      : 0,
            "method_settings" : {}
        }
    ],
    "echo_level" : 0,
    "statistics_start_point_control_variable_name" : "TIME",
    "statistics_start_point_control_value"         : 0.0

model_part_name is the model part which all of the mentioned statistics will be calculated. input_variable_settings contains list of statistical methods, their norms and container combinations where statistics will be calculated. under each input_variable_settings_block, method_name is the statistics method, norm_type is the norm type ("none" for value methods, other wise norms are used), container to tell from which container to read/write, method_settings to specifiy input/output variables for the method. Apart from that, there are few global settings. statistics_start_point_control_variable_name is the temporal statistics calculation start control variable name. This variable should be present in the model_part specified in order to calculate temporal statistics. Statistics calculation will start when this variable's value passes user specified value in statistics_start_point_control_value.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

kratosstatisticsapplication-10.4.0-cp314-cp314-win_amd64.whl (845.6 kB view details)

Uploaded CPython 3.14Windows x86-64

kratosstatisticsapplication-10.4.0-cp314-cp314-manylinux_2_28_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.28+ x86-64

kratosstatisticsapplication-10.4.0-cp313-cp313-win_amd64.whl (821.3 kB view details)

Uploaded CPython 3.13Windows x86-64

kratosstatisticsapplication-10.4.0-cp313-cp313-manylinux_2_28_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.28+ x86-64

kratosstatisticsapplication-10.4.0-cp312-cp312-win_amd64.whl (821.1 kB view details)

Uploaded CPython 3.12Windows x86-64

kratosstatisticsapplication-10.4.0-cp312-cp312-manylinux_2_28_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.28+ x86-64

kratosstatisticsapplication-10.4.0-cp311-cp311-win_amd64.whl (819.6 kB view details)

Uploaded CPython 3.11Windows x86-64

kratosstatisticsapplication-10.4.0-cp311-cp311-manylinux_2_28_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.28+ x86-64

kratosstatisticsapplication-10.4.0-cp310-cp310-win_amd64.whl (819.3 kB view details)

Uploaded CPython 3.10Windows x86-64

kratosstatisticsapplication-10.4.0-cp310-cp310-manylinux_2_28_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.28+ x86-64

kratosstatisticsapplication-10.4.0-cp39-cp39-win_amd64.whl (807.7 kB view details)

Uploaded CPython 3.9Windows x86-64

kratosstatisticsapplication-10.4.0-cp39-cp39-manylinux_2_28_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.28+ x86-64

kratosstatisticsapplication-10.4.0-cp38-cp38-win_amd64.whl (819.3 kB view details)

Uploaded CPython 3.8Windows x86-64

kratosstatisticsapplication-10.4.0-cp38-cp38-manylinux_2_28_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.28+ x86-64

File details

Details for the file kratosstatisticsapplication-10.4.0-cp314-cp314-win_amd64.whl.

File metadata

File hashes

Hashes for kratosstatisticsapplication-10.4.0-cp314-cp314-win_amd64.whl
Algorithm Hash digest
SHA256 ad89d9a04a39e5ac49676cd30ba0df356c92fc546dee61303b178227bac0b8ee
MD5 788debaabcc11f14cd6a75c59c043c58
BLAKE2b-256 8966d84f0a1e1dba915d9b567674d68e09dbb1624203f238cd53a5762b7cc139

See more details on using hashes here.

File details

Details for the file kratosstatisticsapplication-10.4.0-cp314-cp314-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for kratosstatisticsapplication-10.4.0-cp314-cp314-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 4d5f7c663d394038838edd89e1c5f9300ec8fb11ffa176f05eff00b7928a1df1
MD5 eb4e55c4a10624c0335cc89bb1a02874
BLAKE2b-256 48574a570c96104e622b43040e34623e0ed9058fbb6b95726dbe89a9be944594

See more details on using hashes here.

File details

Details for the file kratosstatisticsapplication-10.4.0-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for kratosstatisticsapplication-10.4.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 50c25493367e8364381c99babf2eee6e22500e772c88af5a87f0d001fec00a28
MD5 b79900e6ee32a05e9da076a8895f77bb
BLAKE2b-256 12bdee5d12eca55be8548424f444951834ec43407c97fd309efe4ed80de84b02

See more details on using hashes here.

File details

Details for the file kratosstatisticsapplication-10.4.0-cp313-cp313-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for kratosstatisticsapplication-10.4.0-cp313-cp313-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 1b3d1810b185376b2f8527ab32d94f31041f855d5328e01632998f428aa76649
MD5 dbfc8351d9f1f85d9f59146d98e0ac3d
BLAKE2b-256 ae6851d9e47b017229c49c3bdc552e9b682fba0d907f95db074caca5e7743448

See more details on using hashes here.

File details

Details for the file kratosstatisticsapplication-10.4.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for kratosstatisticsapplication-10.4.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 36e8c78cb81bba1a1f77ba6ac4a566906db3080ed1f40b173760689612b4f0e9
MD5 bd86ab1ac01cccf88237271b09842de3
BLAKE2b-256 84a7c477ad96945f3b8da42244b41291f1b0528d649febbae18937cd7fc8818c

See more details on using hashes here.

File details

Details for the file kratosstatisticsapplication-10.4.0-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for kratosstatisticsapplication-10.4.0-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 ebd48a90bd46ccb062bdb9df78eaef406cff49a2c7f2abfd3f51c93e5e7d1fc1
MD5 cb0e07cad8f2d52e5392b3c07865ecb7
BLAKE2b-256 8199a7f8025a13b04a7d32d769f24423a6eaaa980390e13bfcd2a9d5c219b7f1

See more details on using hashes here.

File details

Details for the file kratosstatisticsapplication-10.4.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for kratosstatisticsapplication-10.4.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 f9579ace22ce181649d88ca39990df9c7ac117f1176ef8897f2c74da7f31ac88
MD5 10c1541487a16d292c5362c3dd06ed2e
BLAKE2b-256 13e3239e7a0d9f27e99054e18b251bb1b9713dd2a0b2d8725d3faebd9cf0ade5

See more details on using hashes here.

File details

Details for the file kratosstatisticsapplication-10.4.0-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for kratosstatisticsapplication-10.4.0-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 255ab2695d1f6c13fa778afaab670883071739fa12d9e63f9d2e9ec9d31cd28a
MD5 8db7126a13ef0d0078facfe396fc74bf
BLAKE2b-256 b5e8799428f9a6bdc74355dfce00a4d7bc84eac7e8782cc4dbe74662451c8d01

See more details on using hashes here.

File details

Details for the file kratosstatisticsapplication-10.4.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for kratosstatisticsapplication-10.4.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 45b1340d7970a9e6a9623b43551de2f1cb12d1648520a67c750fdad18bcd611d
MD5 4b74a995a66ca9dd7d6b98d413d84978
BLAKE2b-256 0ee077ec33fcd69052596f13e14937b7eb95fbe59d72abdb68f99b7b755fbb03

See more details on using hashes here.

File details

Details for the file kratosstatisticsapplication-10.4.0-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for kratosstatisticsapplication-10.4.0-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 36801027a866c52683d59eec1403533dbc9b8cdb33408e6ef20a325654e9e9c9
MD5 2113b3a1871fe169782a6c1cad7fa85f
BLAKE2b-256 b8ff89def8f6a8dba4bac1c6a17f931da346c8a3b4cf0e5cb71e41046892c88c

See more details on using hashes here.

File details

Details for the file kratosstatisticsapplication-10.4.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for kratosstatisticsapplication-10.4.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 9b94c81d7ba6bdfe5ba6646132ea35d0e181841392e9557026eec05650daa1fa
MD5 8fad9c062ed8bed5e23fd63511f10001
BLAKE2b-256 90653e415c83bf3079a61be3a635292f5407d91c310ea6899189e667daca2ee2

See more details on using hashes here.

File details

Details for the file kratosstatisticsapplication-10.4.0-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for kratosstatisticsapplication-10.4.0-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 25f7d16fa04ffc310b038d5f6f4f59d846445c4755e21dd50855607067d0eefa
MD5 9252ff282788a19f7d09e198b831a18b
BLAKE2b-256 349ca151b1967b68e54794a0a1204fba5c8e488aa6b2f48900b131d1202e6ef3

See more details on using hashes here.

File details

Details for the file kratosstatisticsapplication-10.4.0-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for kratosstatisticsapplication-10.4.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 b852dcad8ee3a1a33749adf85dc428c55445420abf0d735237749aeb4bc1d677
MD5 69ab06b26e47cd81f4b1e008918c310e
BLAKE2b-256 00cfa4c104a21ecfcbd7e71add02091d07cb9f68d8e993b13e90272d5a52bbb8

See more details on using hashes here.

File details

Details for the file kratosstatisticsapplication-10.4.0-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for kratosstatisticsapplication-10.4.0-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 b1635b5b190b733964f12d27392af9db2f062313987021365a009dd5293d8dfd
MD5 8d74d0aa53c81df14fc3aba3be7167c0
BLAKE2b-256 b5c416d3cb67a6f23b21593e372033abc7cfcf6654fee972a41c4995f11cbff6

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page