A learning rate recommending and benchmarking tool.
Project description
LRBench
Introduction
A learning rate benchmarking and recommending tool, which will help practitioners efficiently select and compose good learning rate policies.
- Semi-automatic Learning Rate Tuning
- Evaluation: A set of Useful Metrics, covering Utility, Cost, and Robustness.
- Verification: Near-optimal Learning Rate
If you find this tool useful, please cite the following paper:
@ARTICLE{lrbench2019,
author = {{Wu}, Yanzhao and {Liu}, Ling and {Bae}, Juhyun and {Chow}, Ka-Ho and
{Iyengar}, Arun and {Pu}, Calton and {Wei}, Wenqi and {Yu}, Lei and
{Zhang}, Qi},
title = "{Demystifying Learning Rate Polices for High Accuracy Training of Deep Neural Networks}",
journal = {arXiv e-prints},
keywords = {Computer Science - Machine Learning, Statistics - Machine Learning},
year = "2019",
month = "Aug",
eid = {arXiv:1908.06477},
pages = {arXiv:1908.06477},
archivePrefix = {arXiv},
eprint = {1908.06477},
primaryClass = {cs.LG},
adsurl = {https://ui.adsabs.harvard.edu/abs/2019arXiv190806477W},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
Problem
Installation
Supported Platforms
Development / Contributing
Issues
Status
Contributors
See the people page for the full listing of contributors.
License
Copyright (c) 20XX-20XX Georgia Tech DiSL
Licensed under the Apache License.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
LRBench-0.0.0.1.tar.gz
(5.9 kB
view details)
File details
Details for the file LRBench-0.0.0.1.tar.gz
.
File metadata
- Download URL: LRBench-0.0.0.1.tar.gz
- Upload date:
- Size: 5.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/2.7.17
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
b7b008b7fd382cc07378f292f7613c81c6db34383f888d6bdf25b15b3ca3d708
|
|
MD5 |
6af18b931d38c896f9ad2f9461de23ff
|
|
BLAKE2b-256 |
567fefbe4502c74c4d522ddb5a351f606982e18fdd16a46b637ff88c8e5b68c2
|