Skip to main content

Versatile end-to-end recommender system.

Project description

LibRecommender

Build CI Codecov pypi Downloads Codacy Badge Code style: black Ruff Documentation Status python versions License

Overview

LibRecommender is an easy-to-use recommender system focused on end-to-end recommendation process. It contains a training(libreco) and serving(libserving) module to let users quickly train and deploy different kinds of recommendation models.

The main features are:

  • Implements a number of popular recommendation algorithms such as FM, DIN, LightGCN etc. See full algorithm list.
  • A hybrid recommender system, which allows user to use either collaborative-filtering or content-based features. New features can be added on the fly.
  • Low memory usage, automatically converts categorical and multi-value categorical features to sparse representation.
  • Supports training for both explicit and implicit datasets, as well as negative sampling on implicit data.
  • Provides end-to-end workflow, i.e. data handling / preprocessing -> model training -> evaluate -> save/load -> serving.
  • Supports cold-start prediction and recommendation.
  • Supports dynamic feature and sequence recommendation.
  • Provides unified and friendly API for all algorithms.
  • Easy to retrain model with new users/items from new data.

Usage

pure collaborative-filtering example :

import numpy as np
import pandas as pd
from libreco.data import random_split, DatasetPure
from libreco.algorithms import LightGCN  # pure data, algorithm LightGCN
from libreco.evaluation import evaluate

data = pd.read_csv("examples/sample_data/sample_movielens_rating.dat", sep="::",
                   names=["user", "item", "label", "time"])

# split whole data into three folds for training, evaluating and testing
train_data, eval_data, test_data = random_split(data, multi_ratios=[0.8, 0.1, 0.1])

train_data, data_info = DatasetPure.build_trainset(train_data)
eval_data = DatasetPure.build_evalset(eval_data)
test_data = DatasetPure.build_testset(test_data)
print(data_info)  # n_users: 5894, n_items: 3253, data sparsity: 0.4172 %

lightgcn = LightGCN(
    task="ranking",
    data_info=data_info,
    loss_type="bpr",
    embed_size=16,
    n_epochs=3,
    lr=1e-3,
    batch_size=2048,
    num_neg=1,
    device="cuda",
)
# monitor metrics on eval data during training
lightgcn.fit(
    train_data,
    neg_sampling=True,
    verbose=2,
    eval_data=eval_data,
    metrics=["loss", "roc_auc", "precision", "recall", "ndcg"],
)

# do final evaluation on test data
evaluate(
    model=lightgcn,
    data=test_data,
    neg_sampling=True,
    metrics=["loss", "roc_auc", "precision", "recall", "ndcg"],
)

# predict preference of user 2211 to item 110
lightgcn.predict(user=2211, item=110)
# recommend 7 items for user 2211
lightgcn.recommend_user(user=2211, n_rec=7)

# cold-start prediction
lightgcn.predict(user="ccc", item="not item", cold_start="average")
# cold-start recommendation
lightgcn.recommend_user(user="are we good?", n_rec=7, cold_start="popular")

include features example :

import numpy as np
import pandas as pd
from libreco.data import split_by_ratio_chrono, DatasetFeat
from libreco.algorithms import YouTubeRanking  # feat data, algorithm YouTubeRanking

data = pd.read_csv("examples/sample_data/sample_movielens_merged.csv", sep=",", header=0)
# split into train and test data based on time
train_data, test_data = split_by_ratio_chrono(data, test_size=0.2)

# specify complete columns information
sparse_col = ["sex", "occupation", "genre1", "genre2", "genre3"]
dense_col = ["age"]
user_col = ["sex", "age", "occupation"]
item_col = ["genre1", "genre2", "genre3"]

train_data, data_info = DatasetFeat.build_trainset(
    train_data, user_col, item_col, sparse_col, dense_col
)
test_data = DatasetFeat.build_testset(test_data)
print(data_info)  # n_users: 5962, n_items: 3226, data sparsity: 0.4185 %

ytb_ranking = YouTubeRanking(
    task="ranking",
    data_info=data_info,
    embed_size=16,
    n_epochs=3,
    lr=1e-4,
    batch_size=512,
    use_bn=True,
    hidden_units=(128, 64, 32),
)
ytb_ranking.fit(
    train_data,
    neg_sampling=True,
    verbose=2,
    shuffle=True,
    eval_data=test_data,
    metrics=["loss", "roc_auc", "precision", "recall", "map", "ndcg"],
)

# predict preference of user 2211 to item 110
ytb_ranking.predict(user=2211, item=110)
# recommend 7 items for user 2211
ytb_ranking.recommend_user(user=2211, n_rec=7)

# cold-start prediction
ytb_ranking.predict(user="ccc", item="not item", cold_start="average")
# cold-start recommendation
ytb_ranking.recommend_user(user="are we good?", n_rec=7, cold_start="popular")

Data Format

JUST normal data format, each line represents a sample. One thing is important, the model assumes that user, item, and label column index are 0, 1, and 2, respectively. You may wish to change the column order if that's not the case. Take for Example, the movielens-1m dataset:

1::1193::5::978300760
1::661::3::978302109
1::914::3::978301968
1::3408::4::978300275

Besides, if you want to use some other meta features (e.g., age, sex, category etc.), you need to tell the model which columns are [sparse_col, dense_col, user_col, item_col], which means all features must be in a same table. See above YouTubeRanking for example.

Also note that your data should not contain missing values.

Documentation

The tutorials and API documentation are hosted on librecommender.readthedocs.io.

The example scripts are under examples/ folder.

Installation & Dependencies

From pypi :  

$ pip install -U LibRecommender

Build from source:

$ git clone https://github.com/massquantity/LibRecommender.git
$ cd LibRecommender
$ pip install .

Basic Dependencies for libreco:

  • Python >= 3.6
  • TensorFlow >= 1.15
  • PyTorch >= 1.10
  • Numpy >= 1.19.5
  • Pandas >= 1.0.0
  • Scipy >= 1.2.1
  • scikit-learn >= 0.20.0
  • gensim >= 4.0.0
  • tqdm
  • nmslib (optional, used in approximate similarity searching. See Embedding)
  • DGL (optional, used in GraphSage and PinSage. See Implementation Details)

If you are using Python 3.6, you also need to install dataclasses, which was first introduced in Python 3.7.

LibRecommender has been tested under TensorFlow 1.15, 2.6, 2.10 and 2.12. If you encounter any problem during running, feel free to open an issue.

Known issue:

  • Sometimes one may encounter errors like ValueError: numpy.ndarray size changed, may indicate binary incompatibility. Expected 88 from C header, got 80 from PyObject. In this case try upgrading numpy, and version 1.22.0 or higher is probably a safe option.
  • When saving a TensorFlow model for serving, you might encounter the error message: Fatal Python error: Segmentation fault (core dumped). This issue is most likely related to the protobuf library, so you should follow the official recommended version based on your local tensorflow version. In general, it's advisable to use protobuf < 4.24.0.

The table below shows some compatible version combinations:

Python Numpy TensorFlow OS
3.6 1.19.5 1.15, 2.5 linux, windows, macos
3.7 1.20.3, 1.21.6 1.15, 2.6, 2.10 linux, windows, macos
3.8 1.22.4, 1.23.4 2.6, 2.10, 2.12 linux, windows, macos
3.9 1.22.4, 1.23.4 2.6, 2.10, 2.12 linux, windows, macos
3.10 1.22.4, 1.23.4, 1.24.2 2.10, 2.12 linux, windows, macos
3.11 1.23.4, 1.24.2 2.12 linux, windows, macos

Optional Dependencies for libserving:

Docker

One can also use the library in a docker container without installing dependencies, see Docker.

References

Algorithm Category1 Backend Sequence2 Graph3 Embedding4 Paper
userCF / itemCF pure Cython Item-Based Collaborative Filtering
SVD pure TensorFlow1 :heavy_check_mark: Matrix Factorization Techniques
SVD++ pure TensorFlow1 :heavy_check_mark: Factorization Meets the Neighborhood
ALS pure Cython :heavy_check_mark: 1. Matrix Completion via Alternating Least Square(ALS)
2. Collaborative Filtering for Implicit Feedback Datasets
3. Conjugate Gradient for Implicit Feedback
NCF pure TensorFlow1 Neural Collaborative Filtering
BPR pure Cython, TensorFlow1 :heavy_check_mark: Bayesian Personalized Ranking
Wide & Deep feat TensorFlow1 Wide & Deep Learning for Recommender Systems
FM feat TensorFlow1 Factorization Machines
DeepFM feat TensorFlow1 DeepFM
YouTubeRetrieval feat TensorFlow1 :heavy_check_mark: :heavy_check_mark: Deep Neural Networks for YouTube Recommendations
YouTubeRanking feat TensorFlow1 :heavy_check_mark: Deep Neural Networks for YouTube Recommendations
AutoInt feat TensorFlow1 AutoInt
DIN feat TensorFlow1 :heavy_check_mark: Deep Interest Network
Item2Vec pure / :heavy_check_mark: :heavy_check_mark: Item2Vec
RNN4Rec / GRU4Rec pure TensorFlow1 :heavy_check_mark: :heavy_check_mark: Session-based Recommendations with Recurrent Neural Networks
Caser pure TensorFlow1 :heavy_check_mark: :heavy_check_mark: Personalized Top-N Sequential Recommendation via Convolutional
WaveNet pure TensorFlow1 :heavy_check_mark: :heavy_check_mark: WaveNet: A Generative Model for Raw Audio
DeepWalk pure / :heavy_check_mark: :heavy_check_mark: DeepWalk
NGCF pure PyTorch :heavy_check_mark: :heavy_check_mark: Neural Graph Collaborative Filtering
LightGCN pure PyTorch :heavy_check_mark: :heavy_check_mark: LightGCN
GraphSage feat DGL, PyTorch :heavy_check_mark: :heavy_check_mark: Inductive Representation Learning on Large Graphs
PinSage feat DGL, PyTorch :heavy_check_mark: :heavy_check_mark: Graph Convolutional Neural Networks for Web-Scale
TwoTower feat TensorFlow1 :heavy_check_mark: 1. Sampling-Bias-Corrected Neural Modeling for Large Corpus Item
2. Self-supervised Learning for Large-scale Item
Transformer feat TensorFlow1 :heavy_check_mark: 1. BST
2. Transformers4Rec
3. RMSNorm
SIM feat TensorFlow1 :heavy_check_mark: SIM

[1] Category: pure means collaborative-filtering algorithms which only use behavior data, feat means other side-features can be included.

[2] Sequence: Algorithms that leverage user behavior sequence.

[3] Graph: Algorithms that leverage graph information, including Graph Embedding (GE) and Graph Neural Network (GNN) .

[4] Embedding: Algorithms that can generate final user and item embeddings.

Powered by

JetBrains Logo

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

LibRecommender-1.4.0.tar.gz (524.6 kB view hashes)

Uploaded Source

Built Distributions

LibRecommender-1.4.0-cp311-cp311-win_amd64.whl (830.0 kB view hashes)

Uploaded CPython 3.11 Windows x86-64

LibRecommender-1.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view hashes)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

LibRecommender-1.4.0-cp311-cp311-macosx_10_9_x86_64.whl (2.2 MB view hashes)

Uploaded CPython 3.11 macOS 10.9+ x86-64

LibRecommender-1.4.0-cp310-cp310-win_amd64.whl (832.2 kB view hashes)

Uploaded CPython 3.10 Windows x86-64

LibRecommender-1.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view hashes)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

LibRecommender-1.4.0-cp310-cp310-macosx_10_9_x86_64.whl (2.2 MB view hashes)

Uploaded CPython 3.10 macOS 10.9+ x86-64

LibRecommender-1.4.0-cp39-cp39-win_amd64.whl (835.5 kB view hashes)

Uploaded CPython 3.9 Windows x86-64

LibRecommender-1.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view hashes)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

LibRecommender-1.4.0-cp39-cp39-macosx_10_9_x86_64.whl (2.2 MB view hashes)

Uploaded CPython 3.9 macOS 10.9+ x86-64

LibRecommender-1.4.0-cp38-cp38-win_amd64.whl (835.3 kB view hashes)

Uploaded CPython 3.8 Windows x86-64

LibRecommender-1.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view hashes)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

LibRecommender-1.4.0-cp38-cp38-macosx_10_9_x86_64.whl (2.2 MB view hashes)

Uploaded CPython 3.8 macOS 10.9+ x86-64

LibRecommender-1.4.0-cp37-cp37m-win_amd64.whl (833.2 kB view hashes)

Uploaded CPython 3.7m Windows x86-64

LibRecommender-1.4.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view hashes)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

LibRecommender-1.4.0-cp37-cp37m-macosx_10_9_x86_64.whl (2.2 MB view hashes)

Uploaded CPython 3.7m macOS 10.9+ x86-64

LibRecommender-1.4.0-cp36-cp36m-win_amd64.whl (832.2 kB view hashes)

Uploaded CPython 3.6m Windows x86-64

LibRecommender-1.4.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view hashes)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

LibRecommender-1.4.0-cp36-cp36m-macosx_10_9_x86_64.whl (2.2 MB view hashes)

Uploaded CPython 3.6m macOS 10.9+ x86-64

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page