This is a pre-production deployment of Warehouse. Changes made here affect the production instance of PyPI (pypi.python.org).
Help us improve Python packaging - Donate today!
Project Description
==================================
Python Hidden Markov Model Library
==================================

This library is a pure Python implementation of Hidden
Markov Models (HMMs). The project structure is quite
simple::

Help on module Markov:

NAME
Markov - Library to implement hidden Markov Models

FILE
Markov.py

CLASSES
__builtin__.object
BayesianModel
HMM
Distribution
PoissonDistribution
Probability

class BayesianModel(__builtin__.object)
| Represents a Bayesian probability model
|
| Methods defined here:
|
| MaximumLikelihoodOutcome(self, PriorProbs=None)
| Returns the maximum likelihood outcome given PriorProbs
|
| MaximumLikelihoodState(self, Observations=None)
| Returns the maximum likelihood of the internal state. If Observations
| is None, defaults to the maximum likelihood of the Prior
|
| Outcomes(self)
| Returns an iterator over the possible outcomes
|
| PriorProbs(self, Observations, PriorDist=None)
| Returns a Distribution representing the probabilities of the prior
| states, given a probability Distribution of Observations
|
| States(self)
| Returns an iterator over the possible states
|
| __call__(self, PriorProbs=None)
| Returns a Distribution representing the probabilities of the outcomes
| given a particular distribution of the priors, which defaults to
| self.Prior
|
| __iadd__(self, Model2)
| Updates the BayesianModel with the data in another BayesianModel
|
| __init__(self, Prior, Conditionals)
| Prior is a Distribution. Conditionals is a dictionary mapping
| each state in Prior to a Distribution
|
| ----------------------------------------------------------------------
| Data descriptors defined here:
|
| __dict__
| dictionary for instance variables (if defined)
|
| __weakref__
| list of weak references to the object (if defined)

class Distribution(__builtin__.object)
| Represents a probability distribution over a set of categories
|
| Methods defined here:
|
| MaximumLikelihoodState(self)
| Returns the state with the greatest likelihood
|
| Sample(self)
| Picks a random sample from the distribution
|
| States(self)
| Yields the Distribution's states
|
| Update(self, categories)
| Updates each category in the probability distiribution, according to
| a dictionary of numerator and denominator values
|
| __call__(self, item)
| Gives the probability of item
|
| __iadd__(self, Dist2)
| Updates the Distribution given another Distribution with the same states
|
| __init__(self, categories, k=0)
| The distribution may be initialised from a list of categories or a
| dictionary of category frequencies. In the latter case, Laplacian
| smoothing may be used
|
| __mul__(self, scalar)
| Returns the probability of each item, multiplied by a scalar
|
| copy(self)
| Returns a copy of the Distribution
|
| ----------------------------------------------------------------------
| Data descriptors defined here:
|
| __dict__
| dictionary for instance variables (if defined)
|
| __weakref__
| list of weak references to the object (if defined)

class HMM(BayesianModel)
| Represents a Hidden Markov Model
|
| Method resolution order:
| HMM
| BayesianModel
| __builtin__.object
|
| Methods defined here:
|
| Analyse(self, Sequence, MaximumLikelihood=False)
| Yields the an estimate of the internal states that generated a Sequence
| of observed values, either as the Maximum Likelihood state
| (Maximumlikelihood=True) or as a Distribution (MaximumLikelihood=False)
|
| MaximumLikelihoodState(self, Observations=None)
| Returns the maximum likelihood of the internal state. If Observations
| is None, defaults to the maximum likelihood of the the Current state, or
| the Prior if self.Current is None
|
| Outcomes(self)
|
| Predict(self)
| Returns a Distribution representing the probabilities of the next
| state given the current state
|
| PriorProbs(self, Observations)
| Returns a Distribution the prior probabilities of the HMM's states
| given a Distribution of Observations
|
| Train(self, Sequence)
| Trains the HMM from a sequence of observations
|
| Update(self, Observations)
| Updates the Prior probabilities, TransitionProbs
| and Conditionals given Observations
|
| __call__(self, PriorProbs=None)
| Returns a Distribution of outcomes given PriorProbs, which defaults
| to self.Current if it is set, or self.Prior otherwise
|
| __init__(self, states, outcomes)
| states is a list or dictionary of states, outcomes is a dictionary
| mapping each state in states to a Distribution of the output states
|
| ----------------------------------------------------------------------
| Methods inherited from BayesianModel:
|
| MaximumLikelihoodOutcome(self, PriorProbs=None)
| Returns the maximum likelihood outcome given PriorProbs
|
| States(self)
| Returns an iterator over the possible states
|
| __iadd__(self, Model2)
| Updates the BayesianModel with the data in another BayesianModel
|
| ----------------------------------------------------------------------
| Data descriptors inherited from BayesianModel:
|
| __dict__
| dictionary for instance variables (if defined)
|
| __weakref__
| list of weak references to the object (if defined)

class PoissonDistribution(Distribution)
| Represents a Poisson distribution
|
| Method resolution order:
| PoissonDistribution
| Distribution
| __builtin__.object
|
| Methods defined here:
|
| MaximumLikelihoodState(self)
|
| Mean(self)
| Returns the Mean of the PoissonDistribution
|
| Sample(self)
| Returns a random sample from the Poisson distribution
|
| States(self, limit=1e-07)
| Yields the PoissonDistribution's states, up to a cumulative
| probability of 1-limit
|
| Update(self, N, p=1.0)
| Updates the distribution, given a value N that has a probability of P
| of being drawn from this distribution
|
| __call__(self, N)
| Returns the probability of N
|
| __init__(self, mean)
| Initialises the distribution with a given mean
|
| copy(self)
| Returns a copy of the PoissonDistribution
|
| ----------------------------------------------------------------------
| Methods inherited from Distribution:
|
| __iadd__(self, Dist2)
| Updates the Distribution given another Distribution with the same states
|
| __mul__(self, scalar)
| Returns the probability of each item, multiplied by a scalar
|
| ----------------------------------------------------------------------
| Data descriptors inherited from Distribution:
|
| __dict__
| dictionary for instance variables (if defined)
|
| __weakref__
| list of weak references to the object (if defined)

class Probability(__builtin__.object)
| Represents a probability as a callable object
|
| Methods defined here:
|
| Update(self, deltaN, deltaD)
| Updates the probability during Bayesian learning
|
| __call__(self)
| Returns the value of the probability
|
| __iadd__(self, Prob2)
| Updates the probability given another Probability object
|
| __init__(self, n, d)
| Initialises the probability from a numerator and a denominator
|
| ----------------------------------------------------------------------
| Data descriptors defined here:
|
| __dict__
| dictionary for instance variables (if defined)
|
| __weakref__
| list of weak references to the object (if defined)
Release History

Release History

0.3.5

This version

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.3.4

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.3.3

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.3.2

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.3.1

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.3.0

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.2.10

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.2.9

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.2.8

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.2.7

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.2.6

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.2.5

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.2.4

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.2.3

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.2.2

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.2.1

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.2

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.1

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

Download Files

Download Files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date
Markov-0.3.5.tar.gz (6.5 kB) Copy SHA256 Checksum SHA256 Source Nov 30, 2016

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting