Skip to main content

An NLP module to automatically Extract skills and certifications from unstructured job postings, texts, and applicant's resumes

Project description

Live demo | Documentation | Website


Downloads License: MIT

Just looking to test out SkillNer? Check out our demo.

SkillNer is an NLP module to automatically Extract skills and certifications from unstructured job postings, texts, and applicant's resumes.

Skillner uses EMSI databse (an open source skill database) as a knowldge base linker to prevent skill duplications.

Installation

It is easy to get started with SkillNer and take advantage of its features.

  1. First, install SkillNer through the pip
pip install skillNer
  1. Next, run the following command to install spacy en_core_web_lg which is one of the main plugins of SkillNer. Thanks its modular nature, you can customize SkillNer behavior just by adjusting | plugin | unplugin modules. Don't worry about these details, we will discuss them in details in the an upcomming Tutorial section.
python -m spacy download en_core_web_lg

Note: The later installation will take few seconds before it get done since spacy en_core_web_lg is a bit too large (800 MB). Yet, you need to wait only one time.

Example of usage

With these initial steps being accomplished, let’s dive a bit deeper into skillNer through a worked example.

Let’s say you want to extract skills from the following job posting:

“You are a Python developer with a solid experience in web development and can manage projects. 
You quickly adapt to new environments and speak fluently English and French”

Annotating skills

We start first by importing modules, particularly spacy and SkillExtractor. Note that if you are using skillNer for the first time, it might take a while to download SKILL_DB.

SKILL_DB is SkillNer default skills database. It was built upon EMSI skills database .

# imports
import spacy
from spacy.matcher import PhraseMatcher

# load default skills data base
from skillNer.general_params import SKILL_DB
# import skill extractor
from skillNer.skill_extractor_class import SkillExtractor

# init params of skill extractor
nlp = spacy.load("en_core_web_lg")
# init skill extractor
skill_extractor = SkillExtractor(nlp, SKILL_DB, PhraseMatcher)

# extract skills from job_description
job_description = """
You are a Python developer with a solid experience in web development
and can manage projects. You quickly adapt to new environments
and speak fluently English and French
"""

annotations = skill_extractor.annotate(job_description)

Exploit annotations

Voilà! Now you can inspect results by rendering the text with the annotated skills. You can acheive that through the .describe method. Note that the output of this method is litteraly an HTML document that gets rendered in your notebook.

example output skillNer

Besides, you can use the raw result of the annotations. Below is the value of the annotations variable from the code above.

# output
{
    'text': 'you are a python developer with a solid experience in web development and can manage projects you quickly adapt to new environments and speak fluently english and french',
    'results': {
        'full_matches': [
            {
                'skill_id': 'KS122Z36QK3N5097B5JH', 
                'doc_node_value': 'web development', 
                'score': 1, 'doc_node_id': [10, 11]
            }
        ], '
        ngram_scored': [
            {
                'skill_id': 'KS125LS6N7WP4S6SFTCK', 
                'doc_node_id': [3], 
                'doc_node_value': 'python', 
                'type': 'fullUni', 
                'score': 1, 
                'len': 1
            }, 
        # the other annotated skills
        # ...
        ]
    }
}

Contribure

SkillNer is the first Open Source skill extractor. Hence it is a tool dedicated to the community and thereby relies on its contribution to evolve.

We did our best to adapt SkillNer for usage and fixed many of its bugs. Therefore, we believe its key features make it ready for a diversity of use cases. However, it still has not reached 100% stability. SkillNer needs the assistance of the community to be adapted further and broaden its usage.

You can contribute to SkillNer either by

  1. Reporting issues. Indeed, you may encounter one while you are using SkillNer. So do not hesitate to mention them in the issue section of our GitHub repository. Also, you can use the issue as a way to suggest new features to be added.

  2. Pushing code to our repository through pull requests. In case you fixed an issue or wanted to extend SkillNer features.

  3. A third (friendly and not technical) option to contribute to SkillNer will be soon released. So, stay tuned...

Finally, make sure to read carefully our guidelines before contributing. It will specifies standards to follow so that we can understand what you want to say.

Besides, it will help you setup SkillNer on your local machine, in case you are willing to push code.

Useful links

  • Visit our website to learn about SkillNer features, how it works, and particularly explore our roadmap
  • Get started with SkillNer and get to know its API by visiting the Documentation
  • Test our Demo to see some of SkillNer capabilities

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

NUGigSkillNER-2.0.4.tar.gz (23.8 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

NUGigSkillNER-2.0.4-py3-none-any.whl (43.4 kB view details)

Uploaded Python 3

File details

Details for the file NUGigSkillNER-2.0.4.tar.gz.

File metadata

  • Download URL: NUGigSkillNER-2.0.4.tar.gz
  • Upload date:
  • Size: 23.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.3

File hashes

Hashes for NUGigSkillNER-2.0.4.tar.gz
Algorithm Hash digest
SHA256 778965241a053f4e34c4d40e12dac0fee9ef8ad8d962f66a925e2d926a6af900
MD5 741c5a872234c0dd4d9cbc88e77543a5
BLAKE2b-256 8a7df9be4b4fb3fdaf06a9c422cde871a3f232d5fd06a73565497bad9589ea01

See more details on using hashes here.

File details

Details for the file NUGigSkillNER-2.0.4-py3-none-any.whl.

File metadata

  • Download URL: NUGigSkillNER-2.0.4-py3-none-any.whl
  • Upload date:
  • Size: 43.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.3

File hashes

Hashes for NUGigSkillNER-2.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 6ff40abe69110a09a8e58e4f345882a0f2d8eca8d2ecc2962086b44ce0b6541f
MD5 e5baacd37176ed353578f7d0b93dbb22
BLAKE2b-256 c9bde2c6ad7e43f3e2b851a83dd41173e089e8dcb1f257dcfab9e3826ac1e8a0

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page