Skip to main content

Handling Cross- and Out-of-Domain Samples in Thai Word Segmentation (ACL 2020 Findings) Stacked Ensemble Framework and DeepCut as Baseline model

Project description

OSKut (Out-of-domain StacKed cut for Word Segmentation)

Open In Collab

Handling Cross- and Out-of-Domain Samples in Thai Word Segmentation (ACL 2021 Findings)
Stacked Ensemble Framework and DeepCut as Baseline model

Read more:

Citation

@inproceedings{limkonchotiwat-etal-2021-handling,
    title = "Handling Cross- and Out-of-Domain Samples in {T}hai Word Segmentation",
    author = "Limkonchotiwat, Peerat  and
      Phatthiyaphaibun, Wannaphong  and
      Sarwar, Raheem  and
      Chuangsuwanich, Ekapol  and
      Nutanong, Sarana",
    booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021",
    month = aug,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.findings-acl.86",
    doi = "10.18653/v1/2021.findings-acl.86",
    pages = "1003--1016",
}

Install

pip install OSKut

How To use

Requirements

  • python >= 3.6
  • tensorflow >= 2.0

Example

Load Engine & Engine Mode

  • ws, tnhc, and BEST !!
    • ws: The model trained on Wisesight-1000 and test on Wisesight-160
    • ws-augment-60p: The model trained on Wisesight-1000 augmented with top-60% entropy
    • tnhc: The model trained on TNHC (80:20 train&test split with random seed 42)
    • BEST: The model trained on BEST-2010 Corpus (NECTEC)
    • SCADS: The model trained on VISTEC-TP-TH-2021 Corpus (VISTEC)
    oskut.load_model(engine='ws')
    # OR
    oskut.load_model(engine='ws-augment-60p')
    # OR
    oskut.load_model(engine='tnhc')
    # OR
    oskut.load_model(engine='best')
    # OR
    oskut.load_model(engine='scads')
    # OR
    
  • tl-deepcut-XXXX
    • We also provide transfer learning of deepcut on 'Wisesight' as tl-deepcut-ws, 'TNHC' as tl-deepcut-tnhc, and 'LST20' as tl-deepcut-lst20
    oskut.load_model(engine='tl-deepcut-ws')
    # OR
    oskut.load_model(engine='tl-deepcut-tnhc')
    
  • deepcut
    • We also provide the original deepcut
    oskut.load_model(engine='deepcut')
    

Segment Example

You need to read the paper to understand why we have $k$ value!

  • Tokenize with default k-value
    oskut.load_model(engine='ws')
    print(oskut.OSKut(['เบียร์ยูไม่อร่อยสัดๆๆๆๆๆฟๆ']))
    print(oskut.OSKut('เบียร์ยูไม่อร่อยสัดๆๆๆๆๆฟๆ'))
    
    ['เบียร์', 'ยู', 'ไม่', 'อร่อย', 'สัด', 'ๆ', 'ๆ', 'ๆ', 'ๆ', 'ๆฟ', 'ๆ']
    ['เบียร์', 'ยู', 'ไม่', 'อร่อย', 'สัด', 'ๆ', 'ๆ', 'ๆ', 'ๆ', 'ๆฟ', 'ๆ']
    
  • Tokenize with a various k-value
    oskut.load_model(engine='ws')
    print(oskut.OSKut('เบียร์ยูไม่อร่อยสัดๆๆๆๆๆฟๆ',k=5)) # refine only 5% of character number
    print(oskut.OSKut('เบียร์ยูไม่อร่อยสัดๆๆๆๆๆฟๆ',k=100)) # refine 100% of character number
    
    ['เบียร์', 'ยู', 'ไม่', 'อร่อย', 'สัด', 'ๆ', 'ๆ', 'ๆ', 'ๆ', 'ๆฟๆ']
    ['เบียร์', 'ยู', 'ไม่', 'อร่อย', 'สัด', 'ๆ', 'ๆ', 'ๆ', 'ๆ', 'ๆฟ', 'ๆ']
    

New datasets!!

VISTEC-TP-TH-2021 (VISTEC), which consists of 49,997 text samples from Twitter (2017-2019).
VISTEC corpus contains 49,997 sentences with 3.39M words where the collection was manually annotated by linguists on four tasks, namely word segmentation, misspelling detection and correction, and named entity recognition.
For more information and download click here

Performance

Model

Without Data Augmentation

With Data Augmentation

Thank you many code from

  • Deepcut (Baseline Model) : We used some of code from Deepcut to perform transfer learning

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

OSKut-1.2.tar.gz (17.6 kB view details)

Uploaded Source

Built Distribution

OSKut-1.2-py3-none-any.whl (44.2 MB view details)

Uploaded Python 3

File details

Details for the file OSKut-1.2.tar.gz.

File metadata

  • Download URL: OSKut-1.2.tar.gz
  • Upload date:
  • Size: 17.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.5.0.1 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.8.5

File hashes

Hashes for OSKut-1.2.tar.gz
Algorithm Hash digest
SHA256 c015c0d031bb94788a28686edafeaa13165210ce17b435428bf497dbec8ca6e1
MD5 2b22d73da6027b42eb00984c41acf57b
BLAKE2b-256 651a54bc33b435150951830b3df04847ba51be2856f17ae094724cfa1c412daa

See more details on using hashes here.

File details

Details for the file OSKut-1.2-py3-none-any.whl.

File metadata

  • Download URL: OSKut-1.2-py3-none-any.whl
  • Upload date:
  • Size: 44.2 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.5.0.1 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.8.5

File hashes

Hashes for OSKut-1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 ef85ebd90a99750f450d409edbea95bfa5ec69287126bdf59322e47461d8e955
MD5 820fad97aa657150e19ef00d16856841
BLAKE2b-256 3b83085cfd50d154986b05b514abcc535d9fecff0c39c832ed4146e5450c51c4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page