This is a pre-production deployment of Warehouse. Changes made here affect the production instance of PyPI (pypi.python.org).
Help us improve Python packaging - Donate today!
Project Description

################################# README.txt############################################### # Name of the project : PACBayesianNMF

# Purpose : Implementation of a PAC-Bayesian approach to Non-Negative Matrix

# Factorization, usein block gradient descent.

# Authors : Astha Gupta <astha736@gmail.com>

# Benjamin Guedj <benjamin.guedj@inria.fr>

# Reference : Source: https://arxiv.org/abs/1601.01345

# P. Alquier and B. Guedj (2016). “A Sharp Oracle Inequality

# for Bayesian Non-Negative Matrix Factorization”, arXiv preprint.

# Please refer to the paper above for a full description on the

# implemented algorithm.

#License : GPLv3


# List of important files and functions

# #################################################################################

# “.pacbayesiannmfblockGradientDescent.py”

# Contains class called blockGradientDescent

# -> setDataMatrix(self,dataMatrix): function to set dataMatrix

# -> setNoOfPatterns(self,K): function to set no of patterns to find

# -> setConditionOnAllSteps(self,concondition_on_step = 1e-2,

# condition_on_inside_step_U = 1e-3,

# condition_on_inside_step_V = 1e-3): Set exit conditions for block

# gradient descent

# -> setConditionOnOutsideStep(self,concondition_on_step = 1e-2):

# Set value for the most outside step, minimize for UV

# -> setConditionOnInsideStepU(self,condition_on_inside_step_U = 1e-3):

# Set value for the inner loop that minimizes for U

# -> setConditionOnInsideStepV(self,condition_on_inside_step_V = 1e-3):

# Set value for the inner loop that minimized for V

#

# -> def applyBlockGradientDescent(self,b = 1e6,lmbd = (float(1)/4)*100,

# pas = 1e-3,printflag = 0):

# This is the main function that applies blockGradientDescent

# b is used to inforce sparcity

# lmbd is lambda from the algorithm

# pas is constant used in algorithm for calculating new U and V

# ##################################################################################


# Usage: Import package, create a 2d dataMatrix with each row as a datapoint having values

# between 0 to 1. Create an object of class with parameters as dataMatrix and an

# integer that specifies no of patterns to be detected. Set other parameters using

# set*() methods. Finally to apply Block Gradient Descent use

# applyBlockGradientDescent() method

#

# from pacbayesiannmf import *

# z = blockGradientDescent(dataMatrix,2)

# z.setConditionOnAllSteps(1e-4,1e-6,1e-6)

# (U,V,crit,out)= z.applyBlockGradientDescent(printflag = 1)

#

# Most important output is V, which contains the signal. Each column of V

# crit gives as an array with distance between actual datamatrix and estimated UV with each step

# out is a list of values of different variables with each step, helps in debugging


################################## END#####################################################

Release History

Release History

0.1.3

This version

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.1.2

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.1.1

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.1.0

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

Download Files

Download Files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date
PACbayesianNMF-0.1.3.zip (1.9 MB) Copy SHA256 Checksum SHA256 Source Jul 12, 2016

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting