Skip to main content

Python Optimal Transport Library

Project description

POT: Python Optimal Transport

PyPI version Anaconda Cloud Build Status Codecov Status Downloads Anaconda downloads License

This open source Python library provides several solvers for optimization problems related to Optimal Transport for signal, image processing and machine learning.

Website and documentation: https://PythonOT.github.io/

Source Code (MIT): https://github.com/PythonOT/POT

POT has the following main features:

  • A large set of differentiable solvers for optimal transport problems, including:
    • Exact linear OT, entropic and quadratic regularized OT,
    • Gromov-Wasserstein (GW) distances, Fused GW distances and variants of quadratic OT,
    • Unbalanced and partial OT for different divergences,
  • OT barycenters (Wasserstein and GW) for fixed and free support,
  • Fast OT solvers in 1D, on the circle and between Gaussian Mixture Models (GMMs),
  • Many ML related solvers, such as domain adaptation, optimal transport mapping estimation, subspace learning, Graph Neural Networks (GNNs) layers.
  • Several backends for easy use with Pytorch, Jax, Tensorflow, Numpy and Cupy arrays.

Implemented Features

POT provides the following generic OT solvers:

POT provides the following Machine Learning related solvers:

Some other examples are available in the documentation.

Using and citing the toolbox

If you use this toolbox in your research and find it useful, please cite POT using the following references from the current version and from our JMLR paper:

Flamary R., Vincent-Cuaz C., Courty N., Gramfort A., Kachaiev O., Quang Tran H., David L., Bonet C., Cassereau N., Gnassounou T., Tanguy E., Delon J., Collas A., Mazelet S., Chapel L., Kerdoncuff T., Yu X., Feickert M., Krzakala P., Liu T., Fernandes Montesuma E. POT Python Optimal Transport (version 0.9.5). URL: https://github.com/PythonOT/POT

Rémi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Z. Alaya, Aurélie Boisbunon, Stanislas Chambon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, Léo Gautheron, Nathalie T.H. Gayraud, Hicham Janati, Alain Rakotomamonjy, Ievgen Redko, Antoine Rolet, Antony Schutz, Vivien Seguy, Danica J. Sutherland, Romain Tavenard, Alexander Tong, Titouan Vayer, POT Python Optimal Transport library, Journal of Machine Learning Research, 22(78):1−8, 2021. URL: https://pythonot.github.io/

In Bibtex format:

@misc{flamary2024pot,
  author = {Flamary, R{\'e}mi and Vincent-Cuaz, C{\'e}dric and Courty, Nicolas and Gramfort, Alexandre and Kachaiev, Oleksii and Quang Tran, Huy and David, Laurène and Bonet, Cl{\'e}ment and Cassereau, Nathan and Gnassounou, Th{\'e}o and Tanguy, Eloi and Delon, Julie and Collas, Antoine and Mazelet, Sonia and Chapel, Laetitia and Kerdoncuff, Tanguy and Yu, Xizheng and Feickert, Matthew and Krzakala, Paul and Liu, Tianlin and Fernandes Montesuma, Eduardo},
  title = {POT Python Optimal Transport (version 0.9.5)},
  url = {https://github.com/PythonOT/POT},
  year = {2024}
}

@article{flamary2021pot,
  author  = {R{\'e}mi Flamary and Nicolas Courty and Alexandre Gramfort and Mokhtar Z. Alaya and Aur{\'e}lie Boisbunon and Stanislas Chambon and Laetitia Chapel and Adrien Corenflos and Kilian Fatras and Nemo Fournier and L{\'e}o Gautheron and Nathalie T.H. Gayraud and Hicham Janati and Alain Rakotomamonjy and Ievgen Redko and Antoine Rolet and Antony Schutz and Vivien Seguy and Danica J. Sutherland and Romain Tavenard and Alexander Tong and Titouan Vayer},
  title   = {POT: Python Optimal Transport},
  journal = {Journal of Machine Learning Research},
  year    = {2021},
  volume  = {22},
  number  = {78},
  pages   = {1-8},
  url     = {http://jmlr.org/papers/v22/20-451.html}
}

Installation

The library has been tested on Linux, MacOSX and Windows. It requires a C++ compiler for building/installing the EMD solver and relies on the following Python modules:

  • Numpy (>=1.16)
  • Scipy (>=1.0)
  • Cython (>=0.23) (build only, not necessary when installing from pip or conda)

Pip installation

You can install the toolbox through PyPI with:

pip install POT

or get the very latest version by running:

pip install -U https://github.com/PythonOT/POT/archive/master.zip # with --user for user install (no root)

Optional dependencies may be installed with

pip install POT[all]

Note that this installs cvxopt, which is licensed under GPL 3.0. Alternatively, if you cannot use GPL-licensed software, the specific optional dependencies may be installed individually, or per-submodule. The available optional installations are backend-jax, backend-tf, backend-torch, cvxopt, dr, gnn, all.

Anaconda installation with conda-forge

If you use the Anaconda python distribution, POT is available in conda-forge. To install it and the required dependencies:

conda install -c conda-forge pot

Post installation check

After a correct installation, you should be able to import the module without errors:

import ot

Note that for easier access the module is named ot instead of pot.

Dependencies

Some sub-modules require additional dependencies which are discussed below

  • ot.dr (Wasserstein dimensionality reduction) depends on autograd and pymanopt that can be installed with:
pip install pymanopt autograd

Examples

Short examples

  • Import the toolbox
import ot
  • Compute Wasserstein distances
# a,b are 1D histograms (sum to 1 and positive)
# M is the ground cost matrix

# With the unified  API :
Wd = ot.solve(M, a, b).value # exact linear program
Wd_reg = ot.solve(M, a, b, reg=reg).value # entropic regularized OT

# With the old API :
Wd = ot.emd2(a, b, M) # exact linear program
Wd_reg = ot.sinkhorn2(a, b, M, reg) # entropic regularized OT
# if b is a matrix compute all distances to a and return a vector
  • Compute OT matrix
# a,b are 1D histograms (sum to 1 and positive)
# M is the ground cost matrix

# With the unified API :
T = ot.solve(M, a, b).plan # exact linear program
T_reg = ot.solve(M, a, b, reg=reg).plan # entropic regularized OT

# With the old API :
T = ot.emd(a, b, M) # exact linear program
T_reg = ot.sinkhorn(a, b, M, reg) # entropic regularized OT
  • Compute OT on empirical distributions
# X and Y are two 2D arrays of shape (n_samples, n_features)

# with squared euclidean metric
T = ot.solve_sample(X, Y).plan # exact linear program
T_reg = ot.solve_sample(X, Y, reg=reg).plan # entropic regularized OT

Wass_2 = ot.solve_sample(X, Y).value # Squared Wasserstein_2
Wass_1 = ot.solve_sample(X, Y, metric='euclidean').value # Wasserstein 1
  • Compute Wasserstein barycenter
# A is a n*d matrix containing d  1D histograms
# M is the ground cost matrix
ba = ot.barycenter(A, M, reg) # reg is regularization parameter

Examples and Notebooks

The examples folder contain several examples and use case for the library. The full documentation with examples and output is available on https://PythonOT.github.io/.

Acknowledgements

This toolbox has been created by Rémi Flamary and Nicolas Courty.

It is currently maintained by :

The POT contributors to this library are listed here.

POT has benefited from the financing or manpower from the following partners:

ANRCNRS3IAHi!PARIS

Contributions and code of conduct

Every contribution is welcome and should respect the contribution guidelines. Each member of the project is expected to follow the code of conduct.

Support

You can ask questions and join the development discussion:

You can also post bug reports and feature requests in Github issues. Make sure to read our guidelines first.

References

[1] Bonneel, N., Van De Panne, M., Paris, S., & Heidrich, W. (2011, December). Displacement interpolation using Lagrangian mass transport. In ACM Transactions on Graphics (TOG) (Vol. 30, No. 6, p. 158). ACM.

[2] Cuturi, M. (2013). Sinkhorn distances: Lightspeed computation of optimal transport. In Advances in Neural Information Processing Systems (pp. 2292-2300).

[3] Benamou, J. D., Carlier, G., Cuturi, M., Nenna, L., & Peyré, G. (2015). Iterative Bregman projections for regularized transportation problems. SIAM Journal on Scientific Computing, 37(2), A1111-A1138.

[4] S. Nakhostin, N. Courty, R. Flamary, D. Tuia, T. Corpetti, Supervised planetary unmixing with optimal transport, Workshop on Hyperspectral Image and Signal Processing : Evolution in Remote Sensing (WHISPERS), 2016.

[5] N. Courty; R. Flamary; D. Tuia; A. Rakotomamonjy, Optimal Transport for Domain Adaptation, in IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.PP, no.99, pp.1-1

[6] Ferradans, S., Papadakis, N., Peyré, G., & Aujol, J. F. (2014). Regularized discrete optimal transport. SIAM Journal on Imaging Sciences, 7(3), 1853-1882.

[7] Rakotomamonjy, A., Flamary, R., & Courty, N. (2015). Generalized conditional gradient: analysis of convergence and applications. arXiv preprint arXiv:1510.06567.

[8] M. Perrot, N. Courty, R. Flamary, A. Habrard (2016), Mapping estimation for discrete optimal transport, Neural Information Processing Systems (NIPS).

[9] Schmitzer, B. (2016). Stabilized Sparse Scaling Algorithms for Entropy Regularized Transport Problems. arXiv preprint arXiv:1610.06519.

[10] Chizat, L., Peyré, G., Schmitzer, B., & Vialard, F. X. (2016). Scaling algorithms for unbalanced transport problems. arXiv preprint arXiv:1607.05816.

[11] Flamary, R., Cuturi, M., Courty, N., & Rakotomamonjy, A. (2016). Wasserstein Discriminant Analysis. arXiv preprint arXiv:1608.08063.

[12] Gabriel Peyré, Marco Cuturi, and Justin Solomon (2016), Gromov-Wasserstein averaging of kernel and distance matrices International Conference on Machine Learning (ICML).

[13] Mémoli, Facundo (2011). Gromov–Wasserstein distances and the metric approach to object matching. Foundations of computational mathematics 11.4 : 417-487.

[14] Knott, M. and Smith, C. S. (1984).On the optimal mapping of distributions, Journal of Optimization Theory and Applications Vol 43.

[15] Peyré, G., & Cuturi, M. (2018). Computational Optimal Transport .

[16] Agueh, M., & Carlier, G. (2011). Barycenters in the Wasserstein space. SIAM Journal on Mathematical Analysis, 43(2), 904-924.

[17] Blondel, M., Seguy, V., & Rolet, A. (2018). Smooth and Sparse Optimal Transport. Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics (AISTATS).

[18] Genevay, A., Cuturi, M., Peyré, G. & Bach, F. (2016) Stochastic Optimization for Large-scale Optimal Transport. Advances in Neural Information Processing Systems (2016).

[19] Seguy, V., Bhushan Damodaran, B., Flamary, R., Courty, N., Rolet, A.& Blondel, M. Large-scale Optimal Transport and Mapping Estimation. International Conference on Learning Representation (2018)

[20] Cuturi, M. and Doucet, A. (2014) Fast Computation of Wasserstein Barycenters. International Conference in Machine Learning

[21] Solomon, J., De Goes, F., Peyré, G., Cuturi, M., Butscher, A., Nguyen, A. & Guibas, L. (2015). Convolutional wasserstein distances: Efficient optimal transportation on geometric domains. ACM Transactions on Graphics (TOG), 34(4), 66.

[22] J. Altschuler, J.Weed, P. Rigollet, (2017) Near-linear time approximation algorithms for optimal transport via Sinkhorn iteration, Advances in Neural Information Processing Systems (NIPS) 31

[23] Aude, G., Peyré, G., Cuturi, M., Learning Generative Models with Sinkhorn Divergences, Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics, (AISTATS) 21, 2018

[24] Vayer, T., Chapel, L., Flamary, R., Tavenard, R. and Courty, N. (2019). Optimal Transport for structured data with application on graphs Proceedings of the 36th International Conference on Machine Learning (ICML).

[25] Frogner C., Zhang C., Mobahi H., Araya-Polo M., Poggio T. (2015). Learning with a Wasserstein Loss Advances in Neural Information Processing Systems (NIPS).

[26] Alaya M. Z., Bérar M., Gasso G., Rakotomamonjy A. (2019). Screening Sinkhorn Algorithm for Regularized Optimal Transport, Advances in Neural Information Processing Systems 33 (NeurIPS).

[27] Redko I., Courty N., Flamary R., Tuia D. (2019). Optimal Transport for Multi-source Domain Adaptation under Target Shift, Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics (AISTATS) 22, 2019.

[28] Caffarelli, L. A., McCann, R. J. (2010). Free boundaries in optimal transport and Monge-Ampere obstacle problems, Annals of mathematics, 673-730.

[29] Chapel, L., Alaya, M., Gasso, G. (2020). Partial Optimal Transport with Applications on Positive-Unlabeled Learning, Advances in Neural Information Processing Systems (NeurIPS), 2020.

[30] Flamary R., Courty N., Tuia D., Rakotomamonjy A. (2014). Optimal transport with Laplacian regularization: Applications to domain adaptation and shape matching, NIPS Workshop on Optimal Transport and Machine Learning OTML, 2014.

[31] Bonneel, Nicolas, et al. Sliced and radon wasserstein barycenters of measures, Journal of Mathematical Imaging and Vision 51.1 (2015): 22-45

[32] Huang, M., Ma S., Lai, L. (2021). A Riemannian Block Coordinate Descent Method for Computing the Projection Robust Wasserstein Distance, Proceedings of the 38th International Conference on Machine Learning (ICML).

[33] Kerdoncuff T., Emonet R., Marc S. Sampled Gromov Wasserstein, Machine Learning Journal (MJL), 2021

[34] Feydy, J., Séjourné, T., Vialard, F. X., Amari, S. I., Trouvé, A., & Peyré, G. (2019, April). Interpolating between optimal transport and MMD using Sinkhorn divergences. In The 22nd International Conference on Artificial Intelligence and Statistics (pp. 2681-2690). PMLR.

[35] Deshpande, I., Hu, Y. T., Sun, R., Pyrros, A., Siddiqui, N., Koyejo, S., ... & Schwing, A. G. (2019). Max-sliced wasserstein distance and its use for gans. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 10648-10656).

[36] Liutkus, A., Simsekli, U., Majewski, S., Durmus, A., & Stöter, F. R. (2019, May). Sliced-Wasserstein flows: Nonparametric generative modeling via optimal transport and diffusions. In International Conference on Machine Learning (pp. 4104-4113). PMLR.

[37] Janati, H., Cuturi, M., Gramfort, A. Debiased sinkhorn barycenters Proceedings of the 37th International Conference on Machine Learning, PMLR 119:4692-4701, 2020

[38] C. Vincent-Cuaz, T. Vayer, R. Flamary, M. Corneli, N. Courty, Online Graph Dictionary Learning, International Conference on Machine Learning (ICML), 2021.

[39] Gozlan, N., Roberto, C., Samson, P. M., & Tetali, P. (2017). Kantorovich duality for general transport costs and applications. Journal of Functional Analysis, 273(11), 3327-3405.

[40] Forrow, A., Hütter, J. C., Nitzan, M., Rigollet, P., Schiebinger, G., & Weed, J. (2019, April). Statistical optimal transport via factored couplings. In The 22nd International Conference on Artificial Intelligence and Statistics (pp. 2454-2465). PMLR.

[41] Chapel*, L., Flamary*, R., Wu, H., Févotte, C., Gasso, G. (2021). Unbalanced Optimal Transport through Non-negative Penalized Linear Regression Advances in Neural Information Processing Systems (NeurIPS), 2020. (Two first co-authors)

[42] Delon, J., Gozlan, N., and Saint-Dizier, A. Generalized Wasserstein barycenters between probability measures living on different subspaces. arXiv preprint arXiv:2105.09755, 2021.

[43] Álvarez-Esteban, Pedro C., et al. A fixed-point approach to barycenters in Wasserstein space. Journal of Mathematical Analysis and Applications 441.2 (2016): 744-762.

[44] Delon, Julie, Julien Salomon, and Andrei Sobolevski. Fast transport optimization for Monge costs on the circle. SIAM Journal on Applied Mathematics 70.7 (2010): 2239-2258.

[45] Hundrieser, Shayan, Marcel Klatt, and Axel Munk. The statistics of circular optimal transport. Directional Statistics for Innovative Applications: A Bicentennial Tribute to Florence Nightingale. Singapore: Springer Nature Singapore, 2022. 57-82.

[46] Bonet, C., Berg, P., Courty, N., Septier, F., Drumetz, L., & Pham, M. T. (2023). Spherical Sliced-Wasserstein. International Conference on Learning Representations.

[47] Chowdhury, S., & Mémoli, F. (2019). The gromov–wasserstein distance between networks and stable network invariants. Information and Inference: A Journal of the IMA, 8(4), 757-787.

[48] Cédric Vincent-Cuaz, Rémi Flamary, Marco Corneli, Titouan Vayer, Nicolas Courty (2022). Semi-relaxed Gromov-Wasserstein divergence and applications on graphs. International Conference on Learning Representations (ICLR), 2022.

[49] Redko, I., Vayer, T., Flamary, R., and Courty, N. (2020). CO-Optimal Transport. Advances in Neural Information Processing Systems, 33.

[50] Liu, T., Puigcerver, J., & Blondel, M. (2023). Sparsity-constrained optimal transport. Proceedings of the Eleventh International Conference on Learning Representations (ICLR).

[51] Xu, H., Luo, D., Zha, H., & Carin, L. (2019). Gromov-wasserstein learning for graph matching and node embedding. In International Conference on Machine Learning (ICML), 2019.

[52] Collas, A., Vayer, T., Flamary, F., & Breloy, A. (2023). Entropic Wasserstein Component Analysis. ArXiv.

[53] C. Vincent-Cuaz, R. Flamary, M. Corneli, T. Vayer, N. Courty (2022). Template based graph neural network with optimal transport distances. Advances in Neural Information Processing Systems, 35.

[54] Bécigneul, G., Ganea, O. E., Chen, B., Barzilay, R., & Jaakkola, T. S. (2020). Optimal transport graph neural networks.

[55] Ronak Mehta, Jeffery Kline, Vishnu Suresh Lokhande, Glenn Fung, & Vikas Singh (2023). Efficient Discrete Multi Marginal Optimal Transport Regularization. In The Eleventh International Conference on Learning Representations (ICLR).

[56] Jeffery Kline. Properties of the d-dimensional earth mover’s problem. Discrete Applied Mathematics, 265: 128–141, 2019.

[57] Delon, J., Desolneux, A., & Salmona, A. (2022). Gromov–Wasserstein distances between Gaussian distributions. Journal of Applied Probability, 59(4), 1178-1198.

[58] Paty F-P., d’Aspremont 1., & Cuturi M. (2020). Regularity as regularization:Smooth and strongly convex brenier potentials in optimal transport. In International Conference on Artificial Intelligence and Statistics, pages 1222–1232. PMLR, 2020.

[59] Taylor A. B. (2017). Convex interpolation and performance estimation of first-order methods for convex optimization. PhD thesis, Catholic University of Louvain, Louvain-la-Neuve, Belgium, 2017.

[60] Feydy, J., Roussillon, P., Trouvé, A., & Gori, P. (2019). Fast and scalable optimal transport for brain tractograms. In Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part III 22 (pp. 636-644). Springer International Publishing.

[61] Charlier, B., Feydy, J., Glaunes, J. A., Collin, F. D., & Durif, G. (2021). Kernel operations on the gpu, with autodiff, without memory overflows. The Journal of Machine Learning Research, 22(1), 3457-3462.

[62] H. Van Assel, C. Vincent-Cuaz, T. Vayer, R. Flamary, N. Courty (2023). Interpolating between Clustering and Dimensionality Reduction with Gromov-Wasserstein. NeurIPS 2023 Workshop Optimal Transport and Machine Learning.

[63] Li, J., Tang, J., Kong, L., Liu, H., Li, J., So, A. M. C., & Blanchet, J. (2022). A Convergent Single-Loop Algorithm for Relaxation of Gromov-Wasserstein in Graph Data. In The Eleventh International Conference on Learning Representations.

[64] Ma, X., Chu, X., Wang, Y., Lin, Y., Zhao, J., Ma, L., & Zhu, W. (2023). Fused Gromov-Wasserstein Graph Mixup for Graph-level Classifications. In Thirty-seventh Conference on Neural Information Processing Systems.

[65] Scetbon, M., Cuturi, M., & Peyré, G. (2021). Low-Rank Sinkhorn Factorization.

[66] Pooladian, Aram-Alexandre, and Jonathan Niles-Weed. Entropic estimation of optimal transport maps. arXiv preprint arXiv:2109.12004 (2021).

[67] Scetbon, M., Peyré, G. & Cuturi, M. (2022). Linear-Time Gromov-Wasserstein Distances using Low Rank Couplings and Costs. In International Conference on Machine Learning (ICML), 2022.

[68] Chowdhury, S., Miller, D., & Needham, T. (2021). Quantized gromov-wasserstein. ECML PKDD 2021. Springer International Publishing.

[69] Delon, J., & Desolneux, A. (2020). A Wasserstein-type distance in the space of Gaussian mixture models. SIAM Journal on Imaging Sciences, 13(2), 936-970.

[70] A. Thual, H. Tran, T. Zemskova, N. Courty, R. Flamary, S. Dehaene & B. Thirion (2022). Aligning individual brains with Fused Unbalanced Gromov-Wasserstein.. Neural Information Processing Systems (NeurIPS).

[71] H. Tran, H. Janati, N. Courty, R. Flamary, I. Redko, P. Demetci & R. Singh (2023). Unbalanced Co-Optimal Transport. AAAI Conference on Artificial Intelligence.

[72] Thibault Séjourné, François-Xavier Vialard, and Gabriel Peyré (2021). The Unbalanced Gromov Wasserstein Distance: Conic Formulation and Relaxation. Neural Information Processing Systems (NeurIPS).

[73] Séjourné, T., Vialard, F. X., & Peyré, G. (2022). Faster Unbalanced Optimal Transport: Translation Invariant Sinkhorn and 1-D Frank-Wolfe. In International Conference on Artificial Intelligence and Statistics (pp. 4995-5021). PMLR.

[74] Chewi, S., Maunu, T., Rigollet, P., & Stromme, A. J. (2020). Gradient descent algorithms for Bures-Wasserstein barycenters. In Conference on Learning Theory (pp. 1276-1304). PMLR.

[75] Altschuler, J., Chewi, S., Gerber, P. R., & Stromme, A. (2021). Averaging on the Bures-Wasserstein manifold: dimension-free convergence of gradient descent. Advances in Neural Information Processing Systems, 34, 22132-22145.

[76] Chapel, L., Tavenard, R. (2025). One for all and all for one: Efficient computation of partial Wasserstein distances on the line. In International Conference on Learning Representations.

[77] Tanguy, Eloi and Delon, Julie and Gozlan, Nathaël (2024). Computing Barycentres of Measures for Generic Transport Costs. arXiv preprint 2501.04016 (2024)

[78] Martin, R. D., Medri, I., Bai, Y., Liu, X., Yan, K., Rohde, G. K., & Kolouri, S. (2024). LCOT: Linear Circular Optimal Transport. International Conference on Learning Representations.

[79] Liu, X., Bai, Y., Martín, R. D., Shi, K., Shahbazi, A., Landman, B. A., Chang, C., & Kolouri, S. (2025). Linear Spherical Sliced Optimal Transport: A Fast Metric for Comparing Spherical Data. International Conference on Learning Representations.

[80] Altschuler, J., Bach, F., Rudi, A., Niles-Weed, J., Massively scalable Sinkhorn distances via the Nyström method, Advances in Neural Information Processing Systems, 2019.

[81] Xu, H., Luo, D., & Carin, L. (2019). Scalable Gromov-Wasserstein learning for graph partitioning and matching. Neural Information Processing Systems (NeurIPS).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pot-0.9.6.post1.tar.gz (604.2 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

pot-0.9.6.post1-cp313-cp313-win_amd64.whl (454.2 kB view details)

Uploaded CPython 3.13Windows x86-64

pot-0.9.6.post1-cp313-cp313-win32.whl (439.8 kB view details)

Uploaded CPython 3.13Windows x86

pot-0.9.6.post1-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

pot-0.9.6.post1-cp313-cp313-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

pot-0.9.6.post1-cp313-cp313-macosx_11_0_arm64.whl (453.2 kB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

pot-0.9.6.post1-cp313-cp313-macosx_10_13_x86_64.whl (463.2 kB view details)

Uploaded CPython 3.13macOS 10.13+ x86-64

pot-0.9.6.post1-cp313-cp313-macosx_10_13_universal2.whl (596.5 kB view details)

Uploaded CPython 3.13macOS 10.13+ universal2 (ARM64, x86-64)

pot-0.9.6.post1-cp312-cp312-win_amd64.whl (455.4 kB view details)

Uploaded CPython 3.12Windows x86-64

pot-0.9.6.post1-cp312-cp312-win32.whl (440.6 kB view details)

Uploaded CPython 3.12Windows x86

pot-0.9.6.post1-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

pot-0.9.6.post1-cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

pot-0.9.6.post1-cp312-cp312-macosx_11_0_arm64.whl (454.7 kB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

pot-0.9.6.post1-cp312-cp312-macosx_10_13_x86_64.whl (464.7 kB view details)

Uploaded CPython 3.12macOS 10.13+ x86-64

pot-0.9.6.post1-cp312-cp312-macosx_10_13_universal2.whl (599.2 kB view details)

Uploaded CPython 3.12macOS 10.13+ universal2 (ARM64, x86-64)

pot-0.9.6.post1-cp311-cp311-win_amd64.whl (458.5 kB view details)

Uploaded CPython 3.11Windows x86-64

pot-0.9.6.post1-cp311-cp311-win32.whl (443.5 kB view details)

Uploaded CPython 3.11Windows x86

pot-0.9.6.post1-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

pot-0.9.6.post1-cp311-cp311-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

pot-0.9.6.post1-cp311-cp311-macosx_11_0_arm64.whl (453.0 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

pot-0.9.6.post1-cp311-cp311-macosx_10_9_x86_64.whl (466.5 kB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

pot-0.9.6.post1-cp311-cp311-macosx_10_9_universal2.whl (599.5 kB view details)

Uploaded CPython 3.11macOS 10.9+ universal2 (ARM64, x86-64)

pot-0.9.6.post1-cp310-cp310-win_amd64.whl (458.5 kB view details)

Uploaded CPython 3.10Windows x86-64

pot-0.9.6.post1-cp310-cp310-win32.whl (443.8 kB view details)

Uploaded CPython 3.10Windows x86

pot-0.9.6.post1-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

pot-0.9.6.post1-cp310-cp310-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

pot-0.9.6.post1-cp310-cp310-macosx_11_0_arm64.whl (450.8 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

pot-0.9.6.post1-cp310-cp310-macosx_10_9_x86_64.whl (464.5 kB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

pot-0.9.6.post1-cp310-cp310-macosx_10_9_universal2.whl (595.4 kB view details)

Uploaded CPython 3.10macOS 10.9+ universal2 (ARM64, x86-64)

pot-0.9.6.post1-cp39-cp39-win_amd64.whl (458.5 kB view details)

Uploaded CPython 3.9Windows x86-64

pot-0.9.6.post1-cp39-cp39-win32.whl (443.8 kB view details)

Uploaded CPython 3.9Windows x86

pot-0.9.6.post1-cp39-cp39-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

pot-0.9.6.post1-cp39-cp39-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

pot-0.9.6.post1-cp39-cp39-macosx_11_0_arm64.whl (450.8 kB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

pot-0.9.6.post1-cp39-cp39-macosx_10_9_x86_64.whl (464.5 kB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

pot-0.9.6.post1-cp39-cp39-macosx_10_9_universal2.whl (595.4 kB view details)

Uploaded CPython 3.9macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file pot-0.9.6.post1.tar.gz.

File metadata

  • Download URL: pot-0.9.6.post1.tar.gz
  • Upload date:
  • Size: 604.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.12.3

File hashes

Hashes for pot-0.9.6.post1.tar.gz
Algorithm Hash digest
SHA256 9b6cc14a8daecfe1268268168cf46548f9130976b22b24a9e8ec62a734be6c43
MD5 3337a537c3e450a3aca984e800c4b2c0
BLAKE2b-256 428b5f939eaf1fbeb7ff914fe540d659486951a056e5537b8f454362045b6c72

See more details on using hashes here.

File details

Details for the file pot-0.9.6.post1-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: pot-0.9.6.post1-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 454.2 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.12.3

File hashes

Hashes for pot-0.9.6.post1-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 a43e2b61389bd32f5b488da2488999ed55867e95fedb25dd64f9f390e40b4fab
MD5 5995d627754b4f520fb4e9be9051ab12
BLAKE2b-256 f7b18ca34418e7c4a2ec666e2204539577287223c4e78ab80b1c746cedb559c3

See more details on using hashes here.

File details

Details for the file pot-0.9.6.post1-cp313-cp313-win32.whl.

File metadata

  • Download URL: pot-0.9.6.post1-cp313-cp313-win32.whl
  • Upload date:
  • Size: 439.8 kB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.12.3

File hashes

Hashes for pot-0.9.6.post1-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 8a1d95310faae9c75355d9e2fac8dfac41316a2450061eefc982ee498a687a34
MD5 c1411dd3f834f07c6c12ba09216c6ca9
BLAKE2b-256 19ae96b2bce173b3d2d3d0faf8b7362fe79e60e1a6a939c9459b2f7b64e625d8

See more details on using hashes here.

File details

Details for the file pot-0.9.6.post1-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pot-0.9.6.post1-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 299f11f172908d799793ef18b2bc82452305350d2528d243e255a17876e98a57
MD5 c5fb967a8cec857fa50ca17baa0d95be
BLAKE2b-256 29fa85af71553b7e990fc37da8d5f2e7294ec66297e62cba419efeec11518e5a

See more details on using hashes here.

File details

Details for the file pot-0.9.6.post1-cp313-cp313-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pot-0.9.6.post1-cp313-cp313-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 ec097ec0ef8bb93fee8cdb187b6a0a9653613cba7b06bb603247930e2c629cdc
MD5 5231c397934df30da0795099aeb99a30
BLAKE2b-256 0ca1f0187ab15aa1538ece07b28f3a7938b8592ef01fbe37b1a8f9c2f8f47f4d

See more details on using hashes here.

File details

Details for the file pot-0.9.6.post1-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pot-0.9.6.post1-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e9fd4b1fafacd37debdb984687ddb26f5c43d1429401847d388a6f1bd1f10e98
MD5 7cd26e852d7a5b6ab70ca8521a80b252
BLAKE2b-256 53e9c7092f7aec8cb32739ad66ba1f1259626546e4893b61b905ce2da3987235

See more details on using hashes here.

File details

Details for the file pot-0.9.6.post1-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pot-0.9.6.post1-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 4f54830e9f9cb78b1ff7abd5c5bf162625ed6aea903241267c64ea9f0fb73ddb
MD5 3bd4f365aea2c33f079792d54c444f86
BLAKE2b-256 f7b93646c153b13f999ac30112dcf85c5f233af79b0d98c37b52dda9a624c91b

See more details on using hashes here.

File details

Details for the file pot-0.9.6.post1-cp313-cp313-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pot-0.9.6.post1-cp313-cp313-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 659fff750a162f58b52b33a64c4ac358f4ff44e9dff0841052c088e1b6a54430
MD5 2355479ccecd5a3703fb9d9e063c62de
BLAKE2b-256 5317e4aebb8deef58b0d40ac339d952d12c63559801b50ae43c622d49bebda7e

See more details on using hashes here.

File details

Details for the file pot-0.9.6.post1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: pot-0.9.6.post1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 455.4 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.12.3

File hashes

Hashes for pot-0.9.6.post1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 b1d8bd9a334c72baa37f9a2b268de5366c23c0f9c9e3d6dc25d150137ec2823c
MD5 3fa9f68343ad6b8304e08ceab22ae319
BLAKE2b-256 c16d23229c0e198a4f7fb27750b3ef8497e6ebed23fe531ed64b5194da8b2b02

See more details on using hashes here.

File details

Details for the file pot-0.9.6.post1-cp312-cp312-win32.whl.

File metadata

  • Download URL: pot-0.9.6.post1-cp312-cp312-win32.whl
  • Upload date:
  • Size: 440.6 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.12.3

File hashes

Hashes for pot-0.9.6.post1-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 571e543cc2b0a462365002203595baf2b89c3d064cce4fce70fd1231e832c21f
MD5 41ac722ee215ee8f69bc564773f03d72
BLAKE2b-256 f5010132c94404cd0b1b2f21c4a49698db9dcd6107c47c02b22df1ed38206b2a

See more details on using hashes here.

File details

Details for the file pot-0.9.6.post1-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pot-0.9.6.post1-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 4f1b0148ae17bec0ed12264c6da3a05e13913b716e2a8c9043242b5d8349d8df
MD5 b3524b171f91df4a946ebbc71ea6aa3a
BLAKE2b-256 2f3fcc519c1176116271b6282268a705162fa042c16cc922bc56039445c9d697

See more details on using hashes here.

File details

Details for the file pot-0.9.6.post1-cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pot-0.9.6.post1-cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 05f6659c5657e6d7e9f98f4a82e0ed64f88e9fce69b2e557416d156343919ba3
MD5 76e48ae88f296dce8b9656c529f0468d
BLAKE2b-256 3060fa72dd6094f7dbe6b38e2c6907af8cd0f18c6bd107e0cf4874deddaba883

See more details on using hashes here.

File details

Details for the file pot-0.9.6.post1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pot-0.9.6.post1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f3207362d3e3b5aaa783f452aa85f66e83edbefb5764f34662860af54ac72ee6
MD5 199d4eb89718b7bd82e57545724ed691
BLAKE2b-256 079f57e49b3f7173359741053c5e2766a45dcf649d767c2e967ef93526c9045f

See more details on using hashes here.

File details

Details for the file pot-0.9.6.post1-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pot-0.9.6.post1-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 c1755516a7354cbd6110ad2e5f341b98b9968240c2f0f67b0ff5e3ebcb3105bd
MD5 3695882825f16f02ec33b69c62bb80fe
BLAKE2b-256 c65cb4e017560531f53d06798c681b0d0a9488bb8116bc98da9d399a3d096391

See more details on using hashes here.

File details

Details for the file pot-0.9.6.post1-cp312-cp312-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pot-0.9.6.post1-cp312-cp312-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 f7c542fc20662e35c24dd82eeff8a737220757434d7f0038664a7322221452f7
MD5 91b3991125a5f1834a051c74b62aac8c
BLAKE2b-256 b92813622807461f9f6082a8cd6768f9b4a810bc3a8fda474b81572da94b4d23

See more details on using hashes here.

File details

Details for the file pot-0.9.6.post1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pot-0.9.6.post1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 458.5 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.12.3

File hashes

Hashes for pot-0.9.6.post1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 e161e49a22d5a925993baace4679f4e32fc2ade8f45ad73cf8417e13df5bd337
MD5 dd56840974208b33c13cf0a0b4c4b755
BLAKE2b-256 a7fa453730c1b10094ab4d2ecd0b5fbfcdfe0305419cf01e32a2d31efd333559

See more details on using hashes here.

File details

Details for the file pot-0.9.6.post1-cp311-cp311-win32.whl.

File metadata

  • Download URL: pot-0.9.6.post1-cp311-cp311-win32.whl
  • Upload date:
  • Size: 443.5 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.12.3

File hashes

Hashes for pot-0.9.6.post1-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 9649b736ea5dddad3a89d55a4a3bb0078610307ba64cac2efebe6bfcf8cfe785
MD5 51a18e582bb4328368e8640a4c45f729
BLAKE2b-256 acde34a50565c37c0b71725a8075ff1ad2de62213d2e119276b546ef20356ac2

See more details on using hashes here.

File details

Details for the file pot-0.9.6.post1-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pot-0.9.6.post1-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 c7568ddc957d3a16739bd24f9e07ce655166d27ebbc8786aad692cc5ba5d4c59
MD5 dd821289b64b07c5edbad1c647c818db
BLAKE2b-256 1591844c8437caaca6d6a71b38623df75c43642a116d399316adb1d0a9280c85

See more details on using hashes here.

File details

Details for the file pot-0.9.6.post1-cp311-cp311-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pot-0.9.6.post1-cp311-cp311-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 68268b4dd926976cf0604d466a57dff2ca44372e8ae9c879ba1f3d2a51e3be3d
MD5 1ea6eb61db8b247b7a405ed030921129
BLAKE2b-256 447ef49d0593338a3b7f2c88c4cd6f1285c084e8ce05d52d42ac6f89f4f7ec0c

See more details on using hashes here.

File details

Details for the file pot-0.9.6.post1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pot-0.9.6.post1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 703853f7ba0ae2afed8203ea3478e87ef5f39d55cd75b1a39bb622867d1d5628
MD5 83a15e6f74cdefde3432ea516db25236
BLAKE2b-256 9fae2b35b96562bd72baf6de9583458878738f4508eef70d6fa9dd5867760d6a

See more details on using hashes here.

File details

Details for the file pot-0.9.6.post1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pot-0.9.6.post1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c0bfac9daec0095061279a709f52be740e09363a62fe4c7edc843a4a0f6144c6
MD5 241fe93525ed7d3648584f1442acc4dc
BLAKE2b-256 e74eb22b789ee3a81c11c6f39ff08ed6a2e797a2a75a831fae996f4057db4771

See more details on using hashes here.

File details

Details for the file pot-0.9.6.post1-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pot-0.9.6.post1-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 7fd8482a0262e5c875c05cf52e9c087e7c8bc473ef05d175887ad16e3c0443b7
MD5 4aefd84f3a919b1a3efceed669efb610
BLAKE2b-256 f6fc3f4014bd6713c5b4c8a329b12c52842443b2284f52213a80e697b76b9f20

See more details on using hashes here.

File details

Details for the file pot-0.9.6.post1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pot-0.9.6.post1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 458.5 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.12.3

File hashes

Hashes for pot-0.9.6.post1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 d35bb0169ef242fc2ce4f610572a5d11ac11d646698cbdf8cbb45d828f3c514b
MD5 0204308d3f95f5b37726fdceb9f3448c
BLAKE2b-256 c4219731ac0b125f755bb513a4ee081dca0ca5335e9059fb3332dd7c50d28415

See more details on using hashes here.

File details

Details for the file pot-0.9.6.post1-cp310-cp310-win32.whl.

File metadata

  • Download URL: pot-0.9.6.post1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 443.8 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.12.3

File hashes

Hashes for pot-0.9.6.post1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 06e21b4dcebc2e8e318a96889243580ea64364830d05d53c4d038afedbe072cc
MD5 8b06526b7b695eff5a689c7a7cac7342
BLAKE2b-256 4e8784cfc49d4d0eb3e7b6cfc8352f0e73f62d456f6ce875da612b919a6bff6f

See more details on using hashes here.

File details

Details for the file pot-0.9.6.post1-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pot-0.9.6.post1-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 48924f34d61b909e68651f3fe9fc1a892c69ae38d3c52bc832f95a28569c0e0e
MD5 0ebce1e31f5cdd1380a700f8dc0f8851
BLAKE2b-256 5b7d1529014aebb9d5fd54538115886d005d371a624b1ecaf5c2525b45ad0f77

See more details on using hashes here.

File details

Details for the file pot-0.9.6.post1-cp310-cp310-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pot-0.9.6.post1-cp310-cp310-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 b17c1373366f8ebd745d159793f415660ec45e69048305bb8597267d900145ab
MD5 75f85ee7b5ced9f1b0a9b9254daf6bc2
BLAKE2b-256 dfe9f8f343588d2a18cd0c77fcf6b6f275642dea3cdf4f0e28e16c6e78198aec

See more details on using hashes here.

File details

Details for the file pot-0.9.6.post1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pot-0.9.6.post1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1de9cf2af8920c5902f1ee779cf2bf388d5677618735ce91f65d7f8e0ead629e
MD5 aa01527b735c72d5ef0a70cad72beb2e
BLAKE2b-256 83239724a5a1ebfd4769377d5293208465ef8e803fbcf85350d5d38af349cbea

See more details on using hashes here.

File details

Details for the file pot-0.9.6.post1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pot-0.9.6.post1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ef7d50dbc851d8b69a6c5305fcad197f149047093e5f4555aed1ea77d1d7823b
MD5 5bf0c5858b0c9833a968e0f83896b661
BLAKE2b-256 079b5145c4264953f03f054d4dc4ce1d8f337eb5827896f9e6a51267432ab86d

See more details on using hashes here.

File details

Details for the file pot-0.9.6.post1-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pot-0.9.6.post1-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 2127b310a13f03951be450812e7dfdf62c5484bc6219bd0e0639f0347b3b60dd
MD5 c91b732071580f6c4215307370382f25
BLAKE2b-256 e6653ed0362444818585d62521f9bf5e6166b8626a714354bc2c8ea5fbdbcbe6

See more details on using hashes here.

File details

Details for the file pot-0.9.6.post1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pot-0.9.6.post1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 458.5 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.12.3

File hashes

Hashes for pot-0.9.6.post1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 60a660387fbdcf3f888768937e9245c5299dd6c247f8340c5d0ced1b83e2c6db
MD5 88c793cd8b3774ee47c0031f9058830f
BLAKE2b-256 3e8144302324a5e48d5cf2f1ea6411bf09d64443027654aba91f4c24f6cae6e3

See more details on using hashes here.

File details

Details for the file pot-0.9.6.post1-cp39-cp39-win32.whl.

File metadata

  • Download URL: pot-0.9.6.post1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 443.8 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.12.3

File hashes

Hashes for pot-0.9.6.post1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 23bdedf4bfdd4c13c571a0efead331cd54ad5a9116d764027c252b3b7738b2c2
MD5 9934b9124a9c13f840a52bfc5bc3d51d
BLAKE2b-256 3ccfed9354e7add601bea3d3fba54a30efbbba0d00610a74635832d1927c3f1d

See more details on using hashes here.

File details

Details for the file pot-0.9.6.post1-cp39-cp39-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pot-0.9.6.post1-cp39-cp39-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 72ce6859e3c93e3c9fef88de35a716ac37b1b7f241063b5ceb5a96bb55835ad6
MD5 2f13bcc4361dc584b2466cea121acc02
BLAKE2b-256 9e0bac33f6d3553b933043089486b63437e947944210cdc4c22a4eb07152e7c3

See more details on using hashes here.

File details

Details for the file pot-0.9.6.post1-cp39-cp39-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pot-0.9.6.post1-cp39-cp39-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 dedcb06ce83790bb7948461fc801542e97c11d7a65846010744a3c449de3af3b
MD5 3c032a9433165740b46c35d3af45aa39
BLAKE2b-256 f2dd1854621b1cc7ba43e4f40b7f053bb6cd240ed2dea6b27ea55038398c9e9f

See more details on using hashes here.

File details

Details for the file pot-0.9.6.post1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pot-0.9.6.post1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 be39b1c80e08b205c9f3f36ab66a364d29286fa3b4deaac14b0a8cc8e2ca5a3f
MD5 c864f0fbab8702ef40011908ac181028
BLAKE2b-256 057fa349bf73feca6329ac5d8344d7712f1d617b825070d2e6461ecae5c4e152

See more details on using hashes here.

File details

Details for the file pot-0.9.6.post1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pot-0.9.6.post1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5b964efd192308fd636fdbb1dd2896946b7dd7d45d08a7324dc217f38f7f568f
MD5 69dd7a0a5c368f47f33039ecd7235922
BLAKE2b-256 55dc8116ab3390ed9a973c7e61903e3e45e98cf3b29d8a0c09a4d082e88aab24

See more details on using hashes here.

File details

Details for the file pot-0.9.6.post1-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pot-0.9.6.post1-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 8e16ad379f32030385b4328f5844751d905c913a94c09581595e726c402e460b
MD5 2ccc7232a496dc6d25621ae4cb39895f
BLAKE2b-256 0876cb9105205674b1ce05d1082ab3f87dd8956a0c55537ed7c209b51eb7ed2d

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page