Skip to main content

With PrettyColorPrinter, you can print numpy arrays / pandas dataframe / list / dicts / tuple! Shows the path to all items! It even works with nested objects.

Project description

With PrettyColorPrinter, you can print numpy arrays / pandas dataframe / list / dicts / tuple! Shows the path to all items! It even works with nested objects.

Very easy to use:

        from PrettyColorPrinter import pqp

        print("Testing")

        df = pd.read_csv(

            "https://raw.githubusercontent.com/pandas-dev/pandas/main/doc/data/titanic.csv"

        )

        df = df[:40]

        print(

            "Regular Dataframe, take a break of 1 sec every 20 lines, can be pulled by pressing enter, any other key + enter will stop the printing"

        )

        pdp(

            df,

            max_column_size=75,

            repeat_cols=20,

            when_to_take_a_break=20,

            break_how_long=10,

        )

        print("Dataframe as Numpy")

        pdp(df, max_column_size=75, repeat_cols=20, printasnp=True)

        print("Transposed DF as Numpy")

        dftr = df.T

        pdp(dftr, max_column_size=75, repeat_cols=20)

        print("values (pandas)")

        dfvals = df.values

        pdp(dfvals, max_column_size=75, repeat_cols=20)

        print("array np (pandas)")

        dfvarr = df.__array__()

        pdp(dfvarr, max_column_size=75, repeat_cols=20)

        print("dict")

        dfdict = df.to_dict()

        pdp(dfdict, max_column_size=75, repeat_cols=20)

        print("records from df (tuple/list)")

        dfrec = df.to_records()

        pdp(dfrec, max_column_size=75, repeat_cols=20)

        dfrecl = df.to_records().tolist()

        pdp(dfrecl, max_column_size=75, repeat_cols=20)

        dfrect = tuple(df.to_records().tolist())

        pdp(dfrect, max_column_size=25, repeat_cols=20)

        print("pd to numpy")

        dfnp = df.to_numpy()

        pdp(dfnp, max_column_size=25, repeat_cols=20)

        pdp(dfnp.flatten(), reshape_big_1_dim_arrays=10)

        user_dict = {}

        user_dict[12] = {

            "Category 1": {"att_1": 1, "att_2": df.__array__()},

            "Category 2": {"att_1": 23, "att_2": df.to_numpy()},

        }



        pdp(user_dict, repeat_cols=50)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PrettyColorPrinter-0.1.tar.gz (7.7 kB view details)

Uploaded Source

Built Distribution

PrettyColorPrinter-0.1-py3-none-any.whl (7.5 kB view details)

Uploaded Python 3

File details

Details for the file PrettyColorPrinter-0.1.tar.gz.

File metadata

  • Download URL: PrettyColorPrinter-0.1.tar.gz
  • Upload date:
  • Size: 7.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for PrettyColorPrinter-0.1.tar.gz
Algorithm Hash digest
SHA256 3e7db7c5ed1bc6ef359919fe7ad69da902d1147569d0930302ba4df761888141
MD5 df73fa5e2de7178bcd2d9b78461a9417
BLAKE2b-256 c25712d1c07276613f26dc72b6492fc3c686a19ddbba2164c403847d8384bea3

See more details on using hashes here.

File details

Details for the file PrettyColorPrinter-0.1-py3-none-any.whl.

File metadata

File hashes

Hashes for PrettyColorPrinter-0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 b1bf17978b1b7ecf104ee96ffa4b844053c8220b1a086828db018caaebdbb8f7
MD5 53e774e579e22f6058852c8bcfbe7682
BLAKE2b-256 cdfb86049af818b35651cb415200142b300ea47033fb080e73971bfed988b76d

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page