Skip to main content

Generic Proxy and Pool Classes for Python

Project description

Proxy Pattern Pool

Generic Proxy and Pool Classes for Python.

Status Tests Coverage Issues Python Version Badges License

This module provides two classes:

  • Proxy implements the proxy pattern, i.e. all calls to methods on the proxy are forwarded to an internally wrapped object. This allows to solve the classic chicken-and-egg importation and initialization possibly circular-dependency issue with Python modules:

    # File "database.py"
    db = Proxy()
    
    def init_app(config):
        db.set_obj(initialization from config)
    
    # File "app.py"
    import database
    from database import db  # db is a proxy to nothing
    
    # delayed initialization
    database.init_app(config)
    
    # db is now a proxy to the initialized object
    
  • Pool implements a thread-safe pool of things which can be used to store expensive-to-create objects such as database connections. The above proxy object creates a pool automatically depending on its parameters.

    Call db._ret_obj() to return the object to the pool when done with it.

Documentation

The Proxy class manages accesses to one or more objects, possibly using a Pool, depending on the expected scope of said objects.

The Proxy constructors expects the following parameters:

  • obj one single object SHARED between all threads.
  • fun one function called for object creation, each time it is needed, for THREAD and VERSATILE scopes.
  • scope object scope as defined by Proxy.Scope:
    • SHARED one shared object (process level)
    • THREAD one object per thread (threading implementation)
    • WERKZEUG one object per greenlet (werkzeug implementation)
    • EVENTLET one object per greenlet (eventlet implementation)
    • GEVENT one object per greenlet (gevent implementation)
    • VERSATILE same as WERKZEUG default is SHARED or THREAD depending on whether an object of a function was passed for the object.
  • set_name the name of a function to set the proxy contents, default is set. This parameter allows to avoid collisions with the proxied methods. It is used as a prefix to have set_obj and set_fun functions which allow to reset the internal obj or fun.
  • max_size maximum pool size for objects kept. None means no pooling, 0 means unlimited pool size (the default).
  • min_size minimum pool size. This many is created on startup. Default is 1.
  • max_use how many times an object should be reused. default is 0 which means unlimited.
  • max_avail_delay after which unused objects are discarded. default is 0.0 which means unlimited.
  • max_using_delay warn about objects being used for too long. default is 0.0 which means no warning.
  • max_using_delay_kill kill objects being used for too long. default is 0.0 which means no killing.
  • opener function to call when creating an object. default is None means nothing is called.
  • getter function to call when getting an object. default is None means nothing is called.
  • retter function to call when returning an object. default is None means nothing is called.
  • closer function to call when discarding an object. default is None means nothing is called.
  • log_level set logging level, default None means no setting.
  • tracer object debug helper, default None means less debug.

When max_size is not None, a Pool is created to store the created objects so as to reuse them. It is the responsability of the user to return the object when not needed anymore by calling _ret_obj explicitely. This is useful for code which keeps creating new threads, eg werkzeug. For a database connection, a good time to do that is just after a commit.

The Pool class manage a pool of objects in a thread-safe way. Its constructor expects the following parameters:

  • fun how to create a new object; the function is passed the creation number.
  • max_size maximum size of pool, 0 for unlimited.
  • min_size minimum size of pool.
  • timeout maximum time to wait for something.
  • max_use after how many usage to discard an object.
  • max_avail_delay when to discard an unused object.
  • max_using_delay when to warn about object kept for a long time.
  • max_using_delay_kill when to kill objects kept for a long time.
  • log_level set logging level, default None means no setting.
  • opener function to call when creating an object, default None means no call.
  • getter function to call when getting an object, default None means no call.
  • retter function to call when returning an object, default None means no call.
  • closer function to call when discarding an object, default None means no call.
  • tracer object debug helper, default None means less debug.

Objects are created on demand by calling fun when needed.

Example

Here is an example of a flask application with blueprints and a shared resource.

First, a shared module holds a proxy to a yet unknown object:

# file "Shared.py"
from ProxyPatternPool import Proxy 
stuff = Proxy()
def init_app(stuff):
    stuff.set_obj(stuff)

This shared object is used by module with a blueprint:

# file "SubStuff.py"
from Flask import Blueprint
from Shared import stuff
sub = Blueprint()

@sub.get("/stuff")
def get_stuff():
    return str(stuff), 200

Then the application itself can load and initialize both modules in any order without risk of having some unitialized stuff imported:

# file "App.py"
from flask import Flask
app = Flask("stuff")

from SubStuff import sub
app.register_blueprint(sub, url_prefix="/sub")

import Shared
Shared.init_app("hello world!")

Notes

This module is somehow rhetorical: because of the GIL Python is quite bad as a parallel language, so the point of creating threads which will mostly not really run in parallel is moot, thus the point of having a clever pool of stuff to be shared by these thread is even mooter!

Shared object must be returned to the pool to avoid depleting resources. This may require some active cooperation from the infrastructure which may or may not be reliable. Consider monitoring your resources to detect unexpected status, eg database connections remaining idle in transaction and the like.

See Also:

License

This code is Public Domain.

Versions

Sources, documentation and issues are hosted on GitHub. Install package from PyPI.

8.0 on 2024-02-20

Add opener, getter, retter and closer pool hooks.

7.4 on 2024-02-17

Fix log_level handling.

7.3 on 2024-02-17

Add tracer parameter to help debugging on pool objects.

7.2 on 2024-02-17

Add log_level parameter. Add pyright (non yet working) check.

7.1 on 2024-02-17

On second thought, allow both warning and killing long running objects.

7.0 on 2024-02-17

Kill long running objects instead of just warning about them.

6.1 on 2023-11-19

Add Python 3.12 tests.

6.0 on 2023-07-17

Add support for more local scopes: WERKZEUG, EVENTLET, GEVENT.

5.0 on 2023-06-16

Use pyproject.toml only. Require Python 3.10 for simpler code.

4.0 on 2023-02-05

Add max_using_delay for warnings. Add with support to both Pool and Proxy classes. Add module-specific exceptions: PoolException, ProxyException.

3.0 on 2022-12-27

Wait for available objects when max_size is reached. Add min_size parameter to Proxy.

2.1 on 2022-12-27

Ensure that pool always hold min_size objects.

2.0 on 2022-12-26

Add min size and max delay feature to Pool.

1.1 on 2022-11-12

Minor fixes for mypy. Test with Python 3.12. Improved documentation.

1.0 on 2022-10-29

Add some documentation.

0.1 on 2022-10-28

Initial release with code extracted from FlaskSimpleAuth.

TODO

  • add a method to delete the proxy?
  • add an actual timeout feature?
  • how to manage a return automatically?

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ProxyPatternPool-8.0.tar.gz (13.0 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

ProxyPatternPool-8.0-py3-none-any.whl (10.0 kB view details)

Uploaded Python 3

File details

Details for the file ProxyPatternPool-8.0.tar.gz.

File metadata

  • Download URL: ProxyPatternPool-8.0.tar.gz
  • Upload date:
  • Size: 13.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.1

File hashes

Hashes for ProxyPatternPool-8.0.tar.gz
Algorithm Hash digest
SHA256 ef0eef8659e6476a1eb633ab6a6554d9179e7d7da7750646156b1fc9d6715143
MD5 d99b866909eeb3ff5029d35c0917c039
BLAKE2b-256 7d161e98114bfdcf35a43f1aae097d8394f17dca3c4c360203cebc6fd025d9c5

See more details on using hashes here.

File details

Details for the file ProxyPatternPool-8.0-py3-none-any.whl.

File metadata

  • Download URL: ProxyPatternPool-8.0-py3-none-any.whl
  • Upload date:
  • Size: 10.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.1

File hashes

Hashes for ProxyPatternPool-8.0-py3-none-any.whl
Algorithm Hash digest
SHA256 0e0ed48176b916f71c9368ba5e320f4b1c2513f3437dbe70501ecc645d19734c
MD5 fc53eaead84b19fee7e2bc5f69cd1aeb
BLAKE2b-256 6a48cdd6f37d887cfb169f65ec07d6f887a24b1f136b8e29eb6dfbefb517b639

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page