Skip to main content

Python Machine Learning Framework

Project description

A generic python machine learning framework designed to be flexible and easy to use. It is built upon scikit-learn, numpy, scipy, and some custom written algorithms.

New in version 2.x:

Complete rewrite of main codebase in order to ease in adding new algorithms and much cleaner code

To test it, simply run:

import PyAI


The main object in the library is the Brain class (PyAI.Brain). With it you access all of the features in the framework.

brain = PyAI.Brain(x_data=data, y_labels=labels, y_data=reg_data)

| This brain object has 2 modes of operation: classification and regression.
| If you wish to perform classification (discrete) prediction, use the y_labels attribute
| If you wish to perform regression (continuous) prediction, use the y_data attribute
Or you can also provide both

| Then, you must initialize one of the algorithms available by performing:

# For example

Currently, the available algorithms are

- clustering
- neighbors
- svm
- gmm
- naive_bayes

Then you can apply any number of prediction methods in order to predict using the models

# For example

| The xxx must match on of the algorithms that you have initialized
| The yyy can either be 'labels' or 'data' for classification and regression respectively

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PyAI-2.12.tar.gz (12.6 kB view hashes)

Uploaded source

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page