Skip to main content

Python bindings for MUMPS, a parallel sparse direct solver

Project description

PyMUMPS: A parallel sparse direct solver

Requirements

Getting Started

Install using python setup.py install or run from the local checkout.

Examples

Centralized input & output. The sparse matrix and right hand side are input only on the rank 0 process. The system is solved using all available processes and the result is available on the rank 0 process.

from mumps import DMumpsContext
ctx = DMumpsContext()
if ctx.myid == 0:
    ctx.set_centralized_sparse(A)
    x = b.copy()
    ctx.set_rhs(x) # Modified in place
ctx.run(job=6) # Analysis + Factorization + Solve
ctx.destroy() # Cleanup

Re-use symbolic or numeric factorizations.

from mumps import DMumpsContext
ctx = DMumpsContext()
if ctx.myid == 0:
    ctx.set_centralized_assembled_rows_cols(A.row+1, A.col+1) # 1-based
ctx.run(job=1) # Analysis

if ctx.myid == 0:
    ctx.set_centralized_assembled_values(A.data)
ctx.run(job=2) # Factorization

if ctx.myid == 0:
    x = b1.copy()
    ctx.set_rhs(x)
ctx.run(job=3) # Solve

# Reuse factorizations by running `job=3` with new right hand sides
# or analyses by supplying new values and running `job=2` to repeat
# the factorization process.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
PyMUMPS-0.3.1.tar.gz (7.9 kB) Copy SHA256 hash SHA256 Source None Aug 21, 2018

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page