Skip to main content

A package for decoding quantum error correcting codes using minimum-weight perfect matching.

Project description

PyMatching

Continuous Integration codecov docs PyPI version Unitary Fund

PyMatching is a fast Python/C++ library for decoding quantum error correcting codes (QECC) using the Minimum Weight Perfect Matching (MWPM) decoder. PyMatching can decode codes for which each error generates a pair of syndrome defects (or only a single defect at a boundary). Codes that satisfy these properties include two-dimensional topological codes such as the toric code, the surface code and 2D hyperbolic codes, amongst others. PyMatching can also be used as a subroutine to decode other codes, such as the 3D toric code and the color code. PyMatching can handle boundaries, measurement errors and weighted edges in the matching graph. Since the core algorithms are written in C++, PyMatching is much faster than a pure Python NetworkX implementation.

Documentation for PyMatching can be found at: pymatching.readthedocs.io

Installation

PyMatching can be downloaded and installed from PyPI with the command:

pip install pymatching

This is the recommended way to install PyMatching since pip will fetch the pre-compiled binaries, rather than building the C++ extension from source on your machine. Note that PyMatching requires Python 3.

If instead you would like to install PyMatching from source, clone the repository (using the --recursive flag to include the lib/pybind11 submodule) and then use pip to install:

git clone --recursive https://github.com/oscarhiggott/PyMatching.git
pip install -e ./PyMatching

The installation may take a few minutes since the C++ extension has to be compiled. If you'd also like to run the tests, first install pytest, and then run:

pytest ./PyMatching/tests ./PyMatching/src

Usage

In order to decode a parity check matrix H (a scipy.sparse matrix) with syndrome vector z (a bitstring which is a numpy array of dtype int), first construct the Matching object after importing it:

from pymatching import Matching
m = Matching(H)

Now to decode, simply run:

c = m.decode(z)

which outputs a bitstring c, which is a numpy array of ints corresponding to the minimum-weight correction. Note that the m by n parity check matrix H should correspond to the Z (or X) stabilisers of a CSS code with n qubits, m Z (or X) stabilisers, and with either one or two non-zero entries per column.

To decode instead in the presence of measurement errors, each stabiliser measurement is repeated L times, and decoding then takes place over a 3D matching graph (see Section IV B of this paper), which can be constructed directly from the check matrix H using:

m = Matching(H, repetitions=L)

and then decoded from an m by L numpy array syndrome z using:

c = m.decode(z)

The Matching object can also be constructed from a NetworkX graph instead of a check matrix, and can handle weighted edges. For full details see the documentation.

Performance

While all the functionality of PyMatching is available via the Python bindings, the core algorithms and data structures are implemented in C++, with the help of the LEMON and Boost Graph libraries. PyMatching also uses a local variant of the MWPM decoder (explained in the Appendix of this paper) that has a runtime that is approximately linear, rather than quadratic, in the number of nodes. As a result, PyMatching is orders of magnitude faster than a standard pure Python NetworkX implementation, as shown here for decoding the toric code under an independent noise model with p=0.05 and noiseless syndrome measurements:

Exact vs. local matching

PyMatching includes both the standard "exact" minimum-weight perfect matching decoder, as well as a close approximation of it, called local matching, which is much faster. Local matching allows each node corresponding to a syndrome defect (-1 measurement) to be matched to one of the num_neighbours defects that are closest to it in the matching graph. By default, PyMatching uses local matching with num_neighbours=30, but a different choice of num_neighbours can be set when decoding, e.g.:

c = m.decode(z, num_neighbours=40)

Note that by setting num_neighbours=sum(z), local matching corresponds to exact matching.

Rather than setting num_neighbours=sum(z), an alternative option for using exact matching is provided by setting num_neighbours=None. If this option is chosen, the shortest paths between all pairs of nodes in the matching graph are pre-computed and cached the first time m.decode is called, and then reused for later uses of m.decode. This differs from local matching, where shortest paths are computed on the fly. As a result, setting num_neighbours=None is more memory intensive than local matching, with the required memory scaling quadratically with the number of nodes in the matching graph, however for exact matching it is faster than setting num_neighbours=sum(z).

For typical decoding problems, local matching is an extremely close approximation of exact matching even for small num_neighbours. The following graph shows the threshold of local matching for the toric code with noisy syndrome measurements (a 3D matching graph), as a function of num_neighbours. For num_neighbours>=16, the local matching threshold is consistent with the 2.92% threshold found with exact matching:

The runtime of local matching scales linearly with num_neighbours, as shown by the following graph, generated using an L=20 toric code:

A more detailed description and analysis of local matching can be found in the PyMatching paper.

Note that PyMatching used num_neighbours=20 as a default for v0.3.1 and earlier.

Attribution

When using PyMatching for research, please cite:

@article{higgott2021pymatching,
  title={{PyMatching}: A Python package for decoding quantum codes with minimum-weight perfect matching},
  author={Higgott, Oscar},
  journal={arXiv preprint arXiv:2105.13082},
  year={2021}
}

Please also consider citing the LEMON and Boost Graph libraries.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PyMatching-0.6.0.tar.gz (11.8 MB view details)

Uploaded Source

Built Distributions

PyMatching-0.6.0-cp310-cp310-win_amd64.whl (177.0 kB view details)

Uploaded CPython 3.10 Windows x86-64

PyMatching-0.6.0-cp310-cp310-musllinux_1_1_x86_64.whl (732.7 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

PyMatching-0.6.0-cp310-cp310-musllinux_1_1_i686.whl (792.5 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

PyMatching-0.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (221.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

PyMatching-0.6.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (230.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

PyMatching-0.6.0-cp310-cp310-macosx_10_9_x86_64.whl (178.8 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

PyMatching-0.6.0-cp39-cp39-win_amd64.whl (174.2 kB view details)

Uploaded CPython 3.9 Windows x86-64

PyMatching-0.6.0-cp39-cp39-musllinux_1_1_x86_64.whl (733.0 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

PyMatching-0.6.0-cp39-cp39-musllinux_1_1_i686.whl (792.8 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

PyMatching-0.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (221.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

PyMatching-0.6.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (231.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

PyMatching-0.6.0-cp39-cp39-macosx_10_9_x86_64.whl (178.9 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

PyMatching-0.6.0-cp38-cp38-win_amd64.whl (176.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

PyMatching-0.6.0-cp38-cp38-musllinux_1_1_x86_64.whl (732.6 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

PyMatching-0.6.0-cp38-cp38-musllinux_1_1_i686.whl (792.3 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

PyMatching-0.6.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (221.1 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

PyMatching-0.6.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (230.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

PyMatching-0.6.0-cp38-cp38-macosx_10_9_x86_64.whl (178.8 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

PyMatching-0.6.0-cp37-cp37m-win_amd64.whl (177.8 kB view details)

Uploaded CPython 3.7m Windows x86-64

PyMatching-0.6.0-cp37-cp37m-musllinux_1_1_x86_64.whl (739.2 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

PyMatching-0.6.0-cp37-cp37m-musllinux_1_1_i686.whl (799.0 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

PyMatching-0.6.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (227.0 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

PyMatching-0.6.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (237.0 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

PyMatching-0.6.0-cp37-cp37m-macosx_10_9_x86_64.whl (177.0 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

PyMatching-0.6.0-cp36-cp36m-win_amd64.whl (177.8 kB view details)

Uploaded CPython 3.6m Windows x86-64

PyMatching-0.6.0-cp36-cp36m-musllinux_1_1_x86_64.whl (739.3 kB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

PyMatching-0.6.0-cp36-cp36m-musllinux_1_1_i686.whl (799.1 kB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

PyMatching-0.6.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (227.0 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

PyMatching-0.6.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (237.1 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

PyMatching-0.6.0-cp36-cp36m-macosx_10_9_x86_64.whl (177.0 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file PyMatching-0.6.0.tar.gz.

File metadata

  • Download URL: PyMatching-0.6.0.tar.gz
  • Upload date:
  • Size: 11.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for PyMatching-0.6.0.tar.gz
Algorithm Hash digest
SHA256 03ee558e252e659592de0debc13147508065a8f6a53e6e0eb8011ee870dd7634
MD5 b3e63c8b92d6f6113417893752509263
BLAKE2b-256 557fe92b052b977eaf32126aa38036f78aee09557dcbcfc4b88aa8fdbc6c18f8

See more details on using hashes here.

File details

Details for the file PyMatching-0.6.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: PyMatching-0.6.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 177.0 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for PyMatching-0.6.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 f109900297e9d69174676da2130ec6f9d4f51adb44dd429f52ee099654f4f2ab
MD5 d34c3a1be279726b97665d2268b8556c
BLAKE2b-256 ac9a72e79c70af77a6fec05782aebcd7d944bab9fe305498dfd7ce0a1ecb0ec0

See more details on using hashes here.

File details

Details for the file PyMatching-0.6.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: PyMatching-0.6.0-cp310-cp310-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 732.7 kB
  • Tags: CPython 3.10, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for PyMatching-0.6.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a24f379a8d7fdb45e614388a76d7560dcc9f9189c3a7f9082c005b5246419d30
MD5 cbfefcc8ad41cd1198a052f5128e37a1
BLAKE2b-256 3c57d384d6ae0cddca66d7fc76a612031ed30208183c0bd3d0fb010d817a1c6d

See more details on using hashes here.

File details

Details for the file PyMatching-0.6.0-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

  • Download URL: PyMatching-0.6.0-cp310-cp310-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 792.5 kB
  • Tags: CPython 3.10, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for PyMatching-0.6.0-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 58355ba106a95a6e27c4ab37b063efab1ec2fd62b89c5092677476787bbca5d0
MD5 3bea4eb6c2d2bf1bf84ca7b9488cc6b3
BLAKE2b-256 f6f0c8347c0b008ec5c35e8e5e13c1c6d51daa8805b808540fb9a56dae39c014

See more details on using hashes here.

File details

Details for the file PyMatching-0.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyMatching-0.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f2461ec3d2b372bf891f203fbcef446009aeab4321ceccedfe5ec57f399b23fd
MD5 e9d28adac44a67cf8da6a7c51bf4198d
BLAKE2b-256 5a55179858c796705509b53fe7059289321980e3c59e85450b7cc1ffbd23b3df

See more details on using hashes here.

File details

Details for the file PyMatching-0.6.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyMatching-0.6.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 981373fc67a2a68dac41db943c9d63a7ed1d30540d74597fe5602ba5a40c0c29
MD5 15d285546346f6d7a45723b2b39216b9
BLAKE2b-256 48dd01e4ea856c2d14e184fc5cac7486b350d6b8890be6e9843807ade8e72e5d

See more details on using hashes here.

File details

Details for the file PyMatching-0.6.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: PyMatching-0.6.0-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 178.8 kB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for PyMatching-0.6.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 afcea59ffaca24eca1a346c457b0fe4df4e4e527834476d2ebd7f8e59ce1cc92
MD5 fb12eb532a82849c028e1d209b9b6903
BLAKE2b-256 78712bdf8b2da1a6f31f8e80f7a5b8928546a65e9f799a159551584de78ddb28

See more details on using hashes here.

File details

Details for the file PyMatching-0.6.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: PyMatching-0.6.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 174.2 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for PyMatching-0.6.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 a0626bf04ead890bee0e4bf3fe7c3742441c863a2c98b3af662f813162fb44da
MD5 1d3cfc6a304cb68c0d69be5180da9b4f
BLAKE2b-256 3d2f4641d9b54d44e796f8f7c2b88540f3592aaf0e108e7e32af2064e4789155

See more details on using hashes here.

File details

Details for the file PyMatching-0.6.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: PyMatching-0.6.0-cp39-cp39-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 733.0 kB
  • Tags: CPython 3.9, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for PyMatching-0.6.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 481be5958a2a871e9ca451930e56628af53ada2213ce00a1a196143580a9451a
MD5 b0c54584f69ad367ea16886ec319f4c0
BLAKE2b-256 5dbcf9019ad9c6241ccadbb3d80e3d8033a6593306486455f046558bee4dc025

See more details on using hashes here.

File details

Details for the file PyMatching-0.6.0-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

  • Download URL: PyMatching-0.6.0-cp39-cp39-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 792.8 kB
  • Tags: CPython 3.9, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for PyMatching-0.6.0-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 53746ddebb9e93f4ac46aa93fd434721ba55213965484d9e879c3b9b1b09b102
MD5 ccabe669ae717451463a8de8da1a98ae
BLAKE2b-256 3e432da3eac0f36326a03ceac6bde0044da7e9c050fa271ad81a65127b97baca

See more details on using hashes here.

File details

Details for the file PyMatching-0.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyMatching-0.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4443dc2fbce09e5c1b1cbda12c3b42eaf4419cd1a3196ed1fcf92180587cca9c
MD5 4e9d91e75959c985434d96579b58f90b
BLAKE2b-256 5fc4f74b3273e7953efdceae81612aa631872cfb19e65254af6e34c340639083

See more details on using hashes here.

File details

Details for the file PyMatching-0.6.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyMatching-0.6.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 993b653999e326f7caee8b07fef678df07a05515c4233eeed281d90c9124a8a8
MD5 ca27a6d47ffe84eb5291949da0d5cccb
BLAKE2b-256 2d0295c5eca96935f866caf96013e709998f94b06db4f67d60e4041849c80206

See more details on using hashes here.

File details

Details for the file PyMatching-0.6.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: PyMatching-0.6.0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 178.9 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for PyMatching-0.6.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b7b3816588c920c53dbaa0817c82d99f0fb18231aaec4b32563b7164d9d08d45
MD5 c6aee8f4208643659f2cfc7da3360758
BLAKE2b-256 ca914486ab8d1573a96ac693fed83bd5ec24a646f3e308178d05309b088e4ab6

See more details on using hashes here.

File details

Details for the file PyMatching-0.6.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: PyMatching-0.6.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 176.9 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for PyMatching-0.6.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 2bc8e4727c404cb389f53fb3caf3852ec4387947cad7842cd9db6e5dbd79909e
MD5 4b3479a3ecdb38ebed18fd963c48046b
BLAKE2b-256 7749a8b1a5f075f78925094ca4d52385f26c9ca22e8cce89188edf6726f3629b

See more details on using hashes here.

File details

Details for the file PyMatching-0.6.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: PyMatching-0.6.0-cp38-cp38-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 732.6 kB
  • Tags: CPython 3.8, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for PyMatching-0.6.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f0d8c26d405b0cdf15f52f866560ff75d50033dfe967e3e04e9eb3858df96c24
MD5 6707d0d0fdd60e1200e2873ac4a29a13
BLAKE2b-256 31c6762ecfc149eb3e7bfb3ebc590256e8fd72ebf3794637f4b527d3a8711a60

See more details on using hashes here.

File details

Details for the file PyMatching-0.6.0-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

  • Download URL: PyMatching-0.6.0-cp38-cp38-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 792.3 kB
  • Tags: CPython 3.8, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for PyMatching-0.6.0-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 8fca2998c44aafe4bf8dd76e2a24c63e8768284c185b0f59b2aee4db3908bc47
MD5 ee051037c820b45129da12b6e15eb2ac
BLAKE2b-256 4f8075fed80e4f6498e5b7adaee95c3920c0a320c6b3081f212767d9ffc610a4

See more details on using hashes here.

File details

Details for the file PyMatching-0.6.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyMatching-0.6.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 72ec7898324c67b2c5ea77898cb26450647623ec6290d0236199616bc842d377
MD5 47394fcf0390f11f0f6d8ac87ff62a42
BLAKE2b-256 65af867ced59e1967580e134cff931aa6c7708c101e935c42fd7ddecf2d7e0a2

See more details on using hashes here.

File details

Details for the file PyMatching-0.6.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyMatching-0.6.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 10ef91a7694895b76533b3d2e121db45018e4550d06d76203fbb2360403597ac
MD5 a7dc90a561a4f96b6ebf4e1d74d56a49
BLAKE2b-256 8aaddae9462c38461db699a27b866579140036074fc85374c8f4459e7f24a489

See more details on using hashes here.

File details

Details for the file PyMatching-0.6.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: PyMatching-0.6.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 178.8 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for PyMatching-0.6.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8b72215ef84b2eec20e2b8f943bafa511c3f31d9eb3162485b1a1d805a59b004
MD5 1c1be68d9e4bc621dd4a16b61a453d8c
BLAKE2b-256 50e6e37b5d11f973c0952264be069fcbe7373246af59195aa9e4b2f8518d2b9d

See more details on using hashes here.

File details

Details for the file PyMatching-0.6.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: PyMatching-0.6.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 177.8 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for PyMatching-0.6.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 6b54dba7af1c9e18614513f50fc2cc420cff0916372bfe08022b74ccc4fc4794
MD5 998060b0f1df623bb79ddc8d1936a68d
BLAKE2b-256 721f2503a56baaf94d1f3441c6a2ae6669cf66774058f987ad9f049b901830e5

See more details on using hashes here.

File details

Details for the file PyMatching-0.6.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: PyMatching-0.6.0-cp37-cp37m-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 739.2 kB
  • Tags: CPython 3.7m, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for PyMatching-0.6.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 cbc6efa983e2f5e9003ed41e67e65716939255f250eaf4d52fb156dd50fcd6e4
MD5 0da5060fea7a6cce976b66c81c9a0f76
BLAKE2b-256 cdad0ab67b95d8b99dc0ac3a57fb5e1df8ebeb6101ce37f65979e11e45b389e8

See more details on using hashes here.

File details

Details for the file PyMatching-0.6.0-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

  • Download URL: PyMatching-0.6.0-cp37-cp37m-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 799.0 kB
  • Tags: CPython 3.7m, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for PyMatching-0.6.0-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 2ba2deb81d66f599f64c297e7f911af1aaec0b85e3f8e804d1e9feeb7e3ccfa7
MD5 d75fdf765d9e7da0e66e010b95c52419
BLAKE2b-256 32c1b499bcfddb71acbeb593d075d1d319ec00961e9cd43d64416a67512c4def

See more details on using hashes here.

File details

Details for the file PyMatching-0.6.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyMatching-0.6.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1ce21f1766f0f8af69509b57d02d64402524a86b9f2042f192ad63731a520ab7
MD5 4bb3730e809fc5712396260936bdfa7e
BLAKE2b-256 bd6daf9e33605894cd73af0c2b0f3efe9b0f61951877c3718e1db0981b3f0831

See more details on using hashes here.

File details

Details for the file PyMatching-0.6.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyMatching-0.6.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 bfbefe55ec9c29ca7694e25e8360dadd1cdf3d6a022d2d830bae77b4c7cfdcee
MD5 8f52edaa84efb869d115f2892175b156
BLAKE2b-256 7ac010a76096d89c3a7d6aa4c11167f375aa845b8c7ba23f3a77d6e64a53eeba

See more details on using hashes here.

File details

Details for the file PyMatching-0.6.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: PyMatching-0.6.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 177.0 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for PyMatching-0.6.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 67b3ffda3f0638ba568073711dc447a4af14882e069e50e9353d359c91462ee8
MD5 242ca80223d8300ea1a70c58afd5a12c
BLAKE2b-256 75838e3fbfc2f34cd5f7167f6cd6d601df41b5cac671b5c422ce82fb6b889535

See more details on using hashes here.

File details

Details for the file PyMatching-0.6.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: PyMatching-0.6.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 177.8 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for PyMatching-0.6.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 7926143179177107fc666d983ca02e72aa67471f532f22932cff85ad47a47f0a
MD5 2a2774f0ea553f419f0ee10c2d57eab3
BLAKE2b-256 11758f007fd6046d405234fdda41acc3811562894f5ec9e15de18e3b4c43336c

See more details on using hashes here.

File details

Details for the file PyMatching-0.6.0-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: PyMatching-0.6.0-cp36-cp36m-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 739.3 kB
  • Tags: CPython 3.6m, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for PyMatching-0.6.0-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 5c63cd32b7fbb791ecfe493291a469cd21038e1f96c6d5478a00ef1dc011ab49
MD5 4bbc52207ce10949775ec811387b7daf
BLAKE2b-256 cedd46540474800136a1a7a85aeafa3dcb1c42e4b215fd731117a2c2795513a8

See more details on using hashes here.

File details

Details for the file PyMatching-0.6.0-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

  • Download URL: PyMatching-0.6.0-cp36-cp36m-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 799.1 kB
  • Tags: CPython 3.6m, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for PyMatching-0.6.0-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 d7864a9445a71192c9c40c9469007cb56507378fc314fea315d4fa0276726bf1
MD5 745105d175bf3139eda10b4dc09641d8
BLAKE2b-256 1a68d39695231c748df4cc09c1dc5106f0064d83c40626c868e63bd3d9315ce4

See more details on using hashes here.

File details

Details for the file PyMatching-0.6.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyMatching-0.6.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9ca7c99a6d68d4d1679d166c566b43306131ec4e93b3133eed32a07b39c5ef47
MD5 b8b852977712ff57c137a1f41ceed427
BLAKE2b-256 74d8a84bce5c4d2c84f8bd30be5021212f507e76e3ec6777053ee83c63305d7d

See more details on using hashes here.

File details

Details for the file PyMatching-0.6.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyMatching-0.6.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e4c777c3c5c54b42aa33f9e25f2fcc24f2c4b617699c8ebcc9ac26c3d53077fd
MD5 97b5f39d2f58e537cd89b8639c5a3135
BLAKE2b-256 cd77612178da0d002850ef0d7c5cdce924fea216070d33cb6467d3f3cd3f491e

See more details on using hashes here.

File details

Details for the file PyMatching-0.6.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: PyMatching-0.6.0-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 177.0 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for PyMatching-0.6.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d2723441d8936072c87a19dda30b8d25eed2bf51b4ea264ff512753f7cb2cecd
MD5 b25cfa4c6797f201d29bbdaae6d7d36e
BLAKE2b-256 e539588787104b43d6b2bf188cec2fe110ae0eeb1bf591765b875cd1a7f8524c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page