Skip to main content

Python package for alpha matting.

Project description

PyMatting: A Python Library for Alpha Matting

License: MIT CI PyPI JOSS Gitter

We introduce the PyMatting package for Python which implements various methods to solve the alpha matting problem.

Lemur

Given an input image and a hand-drawn trimap (top row), alpha matting estimates the alpha channel of a foreground object which can then be composed onto a different background (bottom row).

PyMatting provides:

  • Alpha matting implementations for:
    • Closed Form Alpha Matting [1]
    • Large Kernel Matting [2]
    • KNN Matting [3]
    • Learning Based Digital Matting [4]
    • Random Walk Matting [5]
    • Shared Sampling Matting [6]
  • Foreground estimation implementations for:
    • Closed Form Foreground Estimation [1]
    • Fast Multi-Level Foreground Estimation (CPU, CUDA and OpenCL) [7]
  • Fast multithreaded KNN search
  • Preconditioners to accelerate the convergence rate of conjugate gradient descent:
    • The incomplete thresholded Cholesky decomposition (Incomplete is part of the name. The implementation is quite complete.)
    • The V-Cycle Geometric Multigrid preconditioner
  • Readable code leveraging NumPy, SciPy and Numba

Getting Started

Requirements

Minimal requirements

  • numpy>=1.16.0
  • pillow>=5.2.0
  • numba>=0.47.0
  • scipy>=1.1.0

Additional requirements for GPU support

  • cupy-cuda90>=6.5.0 or similar
  • pyopencl>=2019.1.2

Requirements to run the tests

  • pytest>=5.3.4

Installation with PyPI

pip3 install pymatting

Installation from Source

git clone https://github.com/pymatting/pymatting
cd pymatting
pip3 install .

Example

# First import will take a minute due to compilation
from pymatting import cutout

cutout(
    # input image path
    "data/lemur/lemur.png",
    # input trimap path
    "data/lemur/lemur_trimap.png",
    # output cutout path
    "lemur_cutout.png")

More advanced examples

Trimap Construction

All implemented methods rely on trimaps which roughly classify the image into foreground, background and unknown regions. Trimaps are expected to be numpy.ndarrays of type np.float64 having the same shape as the input image with only one color-channel. Trimap values of 0.0 denote pixels which are 100% background. Similarly, trimap values of 1.0 denote pixels which are 100% foreground. All other values indicate unknown pixels which will be estimated by the algorithm.

Testing

Run the tests from the main directory:

pip3 install -r requirements_tests.txt
ppytest

Currently 89% of the code is covered by tests.

Upgrade

pip3 install --upgrade pymatting
python3 -c "import pymatting"

Bug Reports, Questions and Pull-Requests

Please, see our community guidelines.

Authors

  • Thomas Germer
  • Tobias Uelwer
  • Stefan Conrad
  • Stefan Harmeling

See also the list of contributors who participated in this project.

Projects using PyMatting

  • Rembg - an excellent tool for removing image backgrounds.
  • PaddleSeg - a library for a wide range of image segmentation tasks.
  • chaiNNer - a node-based image processing GUI.
  • LSA-Matting - improving deep image matting via local smoothness assumption.

License

This project is licensed under the MIT License - see the LICENSE.md file for details

Citing

If you found PyMatting to be useful for your work, please consider citing our paper:

@article{Germer2020,
  doi = {10.21105/joss.02481},
  url = {https://doi.org/10.21105/joss.02481},
  year = {2020},
  publisher = {The Open Journal},
  volume = {5},
  number = {54},
  pages = {2481},
  author = {Thomas Germer and Tobias Uelwer and Stefan Conrad and Stefan Harmeling},
  title = {PyMatting: A Python Library for Alpha Matting},
  journal = {Journal of Open Source Software}
}

References

[1] Anat Levin, Dani Lischinski, and Yair Weiss. A closed-form solution to natural image matting. IEEE transactions on pattern analysis and machine intelligence, 30(2):228–242, 2007.

[2] Kaiming He, Jian Sun, and Xiaoou Tang. Fast matting using large kernel matting laplacian matrices. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2165–2172. IEEE, 2010.

[3] Qifeng Chen, Dingzeyu Li, and Chi-Keung Tang. Knn matting. IEEE transactions on pattern analysis and machine intelligence, 35(9):2175–2188, 2013.

[4] Yuanjie Zheng and Chandra Kambhamettu. Learning based digital matting. In 2009 IEEE 12th international conference on computer vision, 889–896. IEEE, 2009.

[5] Leo Grady, Thomas Schiwietz, Shmuel Aharon, and Rüdiger Westermann. Random walks for interactive alpha-matting. In Proceedings of VIIP, volume 2005, 423–429. 2005.

[6] Eduardo S. L. Gastal and Manuel M. Oliveira. "Shared Sampling for Real-Time Alpha Matting". Computer Graphics Forum. Volume 29 (2010), Number 2, Proceedings of Eurographics 2010, pp. 575-584.

[7] Germer, T., Uelwer, T., Conrad, S., & Harmeling, S. (2020). Fast Multi-Level Foreground Estimation. arXiv preprint arXiv:2006.14970.

Lemur image by Mathias Appel from https://www.flickr.com/photos/mathiasappel/25419442300/ licensed under CC0 1.0 Universal (CC0 1.0) Public Domain License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymatting-1.1.14.tar.gz (44.2 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

pymatting-1.1.14-py3-none-any.whl (54.7 kB view details)

Uploaded Python 3

File details

Details for the file pymatting-1.1.14.tar.gz.

File metadata

  • Download URL: pymatting-1.1.14.tar.gz
  • Upload date:
  • Size: 44.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.4

File hashes

Hashes for pymatting-1.1.14.tar.gz
Algorithm Hash digest
SHA256 75e2ec1e346dbd564c9a2cc8229b134ec939f49008fa570025db30003d0c46fc
MD5 06fe81c807b9f1fc22ce4536e0f4aec5
BLAKE2b-256 3543cd7a82913dfde95dfb653efd09c7b394a76b3865570050b674a36fc0078c

See more details on using hashes here.

File details

Details for the file pymatting-1.1.14-py3-none-any.whl.

File metadata

  • Download URL: pymatting-1.1.14-py3-none-any.whl
  • Upload date:
  • Size: 54.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.4

File hashes

Hashes for pymatting-1.1.14-py3-none-any.whl
Algorithm Hash digest
SHA256 62ecb81c6caaf6ced7442d3d0864b8f0a3f9e7a95dfb4f8b672e3526f902d9b3
MD5 4c83d008cbeba350fed5e6c31e1e8490
BLAKE2b-256 f4aa4162e4f638c9fd483b1d7559d88f6e360142ba95edb271f92465ad7055cc

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page