Skip to main content

Mapping and X-Ray Fluorescence Analysis

Project description

Stand-alone application and Python tools for interactive and/or batch processing analysis of X-Ray Fluorescence Spectra. Graphical user interface (GUI) and batch processing capabilities provided

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymca5-5.9.4.tar.gz (15.9 MB view details)

Uploaded Source

Built Distributions

PyMca5-5.9.4-cp312-cp312-win_amd64.whl (9.5 MB view details)

Uploaded CPython 3.12Windows x86-64

PyMca5-5.9.4-cp312-cp312-macosx_10_9_universal2.whl (10.1 MB view details)

Uploaded CPython 3.12macOS 10.9+ universal2 (ARM64, x86-64)

PyMca5-5.9.4-cp311-cp311-win_amd64.whl (9.5 MB view details)

Uploaded CPython 3.11Windows x86-64

PyMca5-5.9.4-cp311-cp311-macosx_10_9_universal2.whl (10.1 MB view details)

Uploaded CPython 3.11macOS 10.9+ universal2 (ARM64, x86-64)

PyMca5-5.9.4-cp310-cp310-win_amd64.whl (9.5 MB view details)

Uploaded CPython 3.10Windows x86-64

PyMca5-5.9.4-cp310-cp310-macosx_10_9_universal2.whl (10.1 MB view details)

Uploaded CPython 3.10macOS 10.9+ universal2 (ARM64, x86-64)

PyMca5-5.9.4-cp39-cp39-win_amd64.whl (9.6 MB view details)

Uploaded CPython 3.9Windows x86-64

PyMca5-5.9.4-cp39-cp39-macosx_10_9_x86_64.whl (9.7 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

PyMca5-5.9.4-cp39-cp39-macosx_10_9_universal2.whl (10.1 MB view details)

Uploaded CPython 3.9macOS 10.9+ universal2 (ARM64, x86-64)

PyMca5-5.9.4-cp38-cp38-win_amd64.whl (9.6 MB view details)

Uploaded CPython 3.8Windows x86-64

PyMca5-5.9.4-cp38-cp38-macosx_11_0_universal2.whl (10.1 MB view details)

Uploaded CPython 3.8macOS 11.0+ universal2 (ARM64, x86-64)

PyMca5-5.9.4-cp38-cp38-macosx_10_9_x86_64.whl (9.7 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

File details

Details for the file pymca5-5.9.4.tar.gz.

File metadata

  • Download URL: pymca5-5.9.4.tar.gz
  • Upload date:
  • Size: 15.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for pymca5-5.9.4.tar.gz
Algorithm Hash digest
SHA256 e8a6f6f19e939695734bc95255b65a895caf17d8561eac74d3077561e5eb1026
MD5 06c0a27a44c554d7a721a1145e04cea4
BLAKE2b-256 4be44c1d0503d6f60773e596e5b83af58ed3e5bfe621f3e3255e411aabfb4455

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.4-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: PyMca5-5.9.4-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for PyMca5-5.9.4-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 add14073645debde8f4c2f9c2d8b56abeae8bad67cfc881342e45b46ec41d8ef
MD5 fc633a8e1360fd1871da917f3cc7aedc
BLAKE2b-256 343a5f822e2c7d1f1b93206e9671dc006f5692247b2822c08dd4f9323b36b7a7

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.4-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for PyMca5-5.9.4-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 df1d187ddec73548872816a1955560f7327f36de373e7c7f5d1891af5c18b252
MD5 b1b94716523548c4e76af026bf6d4e32
BLAKE2b-256 7a28c3f6370d90818698da47a1b2f94f4ef65b78c771c93a0e0e63ed03693271

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.4-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: PyMca5-5.9.4-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for PyMca5-5.9.4-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 562d6c70fadd4ccd1eabac13d9d3a22057d1f3efc9f47c036ecc6968eec48abd
MD5 5c7e185ae4aa16796c4446801fb585fd
BLAKE2b-256 e07576202840de3148c0e06e520432c4066ef8aaf555acd3a677f2c5ea16dbe6

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.4-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for PyMca5-5.9.4-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 c4d2442de46b67a70faae24790758feddf4c2d56a22d27835597fe390fb476e8
MD5 48d9c233bf9485255b8aacd13c0ddde2
BLAKE2b-256 9ca05c0fc1cf9f4bd00ee203af3187a9a387195c57ea42bc323a36bd06a31c2b

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.4-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: PyMca5-5.9.4-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for PyMca5-5.9.4-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 c8003628e68657bd94425a4fcff5886aadf14911947f2cf74161fe7802f33fc7
MD5 be7768e93a205d02b47e036f191dea15
BLAKE2b-256 0b07ab6c87ae93633683403c69689cddf64a9b7f988858feee8248b852825fcf

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.4-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for PyMca5-5.9.4-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 5d1652caf5b76c089902d4db5b6ad72079336e94dd59d32ed25edd9ec853ebe8
MD5 aebcf90a83864df9774059e2fb910d07
BLAKE2b-256 0432d8a4ac6a8e7ba92092029f9afac3073de4674e2392333eb01ef99021c327

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.4-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: PyMca5-5.9.4-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 9.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for PyMca5-5.9.4-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 398b8722be528ea9c71684f37d4df368c45d1cdab7113fa93fa5f4730f49dc7a
MD5 545b64c463ec8bd2cbbd3cdd664c3fa5
BLAKE2b-256 ef5fac2e500c7f687d254a4fa1b5fe7da6c0b3002c4fb13ac014f1f84f0f389e

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.4-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyMca5-5.9.4-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 989c888803bf81982d72a618ae739ad7d03bf2e17d73964d3f05efd8e1b30f6e
MD5 cee980a7186c70467aaf7ea2abc771eb
BLAKE2b-256 1192021dd794fcc7e22f6737a7b9c2aaa50946ff7e5bd8b9a0728abba78e8d8b

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.4-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for PyMca5-5.9.4-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 c1b2eedc5451777482d16c4c0538ada52eee18dacdefb9b6341751ce939c2460
MD5 5bba715e6ac7850a89103b1abc4d0af5
BLAKE2b-256 a657b2300628cebb6725e4492f5b7da61b2cc107c217a2fd67f76c2ecbc8c1b5

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.4-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: PyMca5-5.9.4-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 9.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for PyMca5-5.9.4-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 bbb6f48f418019a02b5f6b6a2ec455d977c1368d12d47367925d9abdbb2cace2
MD5 80ba38538bc446b1afd3f4bf57bc7626
BLAKE2b-256 49cc52a728113a342c8cda3cd017f6617d43583bcfeaa4458c8bd03495bc902b

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.4-cp38-cp38-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for PyMca5-5.9.4-cp38-cp38-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 707803465c12da995436b9906e3763486bb3a4f67f2e39362b5ff6637d4b0b48
MD5 988272ee5568a3a60691f2828ec97c8a
BLAKE2b-256 eff46e317d724a6546ae6d45a8b1856d9827c52aca6be9733048a84b2b5033b7

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.4-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyMca5-5.9.4-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0a5bd70d31bfbd39a2a2c6bcec3237e79764fc7b3692103204314f04de04e84f
MD5 594f140866b2bec6ea077081f6c627aa
BLAKE2b-256 245fbccc425d648e4f5a2cbbc35e3962da78eec5d3dc955dfe0fd237f29d277b

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page