Skip to main content

Mapping and X-Ray Fluorescence Analysis

Project description

Stand-alone application and Python tools for interactive and/or batch processing analysis of X-Ray Fluorescence Spectra. Graphical user interface (GUI) and batch processing capabilities provided

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PyMca5-5.9.0.tar.gz (15.9 MB view details)

Uploaded Source

Built Distributions

PyMca5-5.9.0-cp311-cp311-win_amd64.whl (9.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

PyMca5-5.9.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (11.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

PyMca5-5.9.0-cp311-cp311-macosx_10_9_universal2.whl (10.1 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

PyMca5-5.9.0-cp310-cp310-win_amd64.whl (9.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

PyMca5-5.9.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (11.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

PyMca5-5.9.0-cp310-cp310-macosx_10_9_universal2.whl (10.1 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

PyMca5-5.9.0-cp39-cp39-win_amd64.whl (9.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

PyMca5-5.9.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (11.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

PyMca5-5.9.0-cp39-cp39-macosx_10_9_x86_64.whl (9.7 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

PyMca5-5.9.0-cp39-cp39-macosx_10_9_universal2.whl (10.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

PyMca5-5.9.0-cp38-cp38-win_amd64.whl (9.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

PyMca5-5.9.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (11.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

PyMca5-5.9.0-cp38-cp38-macosx_11_0_universal2.whl (10.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ universal2 (ARM64, x86-64)

PyMca5-5.9.0-cp38-cp38-macosx_10_9_x86_64.whl (9.7 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

PyMca5-5.9.0-cp37-cp37m-win_amd64.whl (9.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

PyMca5-5.9.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (11.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

PyMca5-5.9.0-cp37-cp37m-macosx_10_9_x86_64.whl (9.7 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file PyMca5-5.9.0.tar.gz.

File metadata

  • Download URL: PyMca5-5.9.0.tar.gz
  • Upload date:
  • Size: 15.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.10

File hashes

Hashes for PyMca5-5.9.0.tar.gz
Algorithm Hash digest
SHA256 dc6977b43e1bf3e436d797be3cce3e78112cec8d81f3185efe52962b00bfd079
MD5 28ce963d5fd43c5a616cd7c72dcc01cb
BLAKE2b-256 a67b2ef15ecae919515ac392d463e1b19b06a43f9b80e555c2118ba2c406c828

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: PyMca5-5.9.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 9.6 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.10

File hashes

Hashes for PyMca5-5.9.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 8de4c9db61420b24d47513a737139ffeb7869329186e73117d78634fe3b56f92
MD5 643c106a62c24a60b051422744f9bff5
BLAKE2b-256 54b0f2b62cf9b0cb7a1c71e3ba67e3ba492fc7fac02c35af1ea9aa06b0531d28

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for PyMca5-5.9.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 8211cfa38f4c416a55b66c06d078490b083dfda32edfa38a61993c8dd7ffee73
MD5 9eb5579aaa6650b79a7083b1c675844b
BLAKE2b-256 07ca386fb90feccfe9578eb2cffe0510b0ac1e9a9cca215bfbd0f80f80d533ca

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for PyMca5-5.9.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 f0a8701c0dd13aeef4e9fd9274005b3661aacd53e7eb5ed46d24869790e840ec
MD5 a069f9137911aff8b76c1b0c5101a1be
BLAKE2b-256 669f67b86f40367fafba53f9029785fb84b47d0be2f02341f1741cb7b52b6690

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: PyMca5-5.9.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 9.6 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.10

File hashes

Hashes for PyMca5-5.9.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 f6b31ddafed772f2eb3954186debc46cb9f809b91cf8b90eeae08461e6ed28ec
MD5 7cc2335a19308667f41d44f7cc656313
BLAKE2b-256 f968073e8b5d2483c94c9bd273dae8855b31fb340cbb9e1853b28943e96d37f5

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for PyMca5-5.9.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 1b466504b1e78933b1a4dbe98dc9506e7bc01b5722514d9f05ddf01c04d90248
MD5 68104acc945e59518118a7cb3f23752a
BLAKE2b-256 8ba5f687c64ca4508824922b197814d22b06dfd911603ba59f58b93349b418f9

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for PyMca5-5.9.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 e877a3ba759d2509836340b5fa3f448eb1bbf42b0784df777f7b119928bd3cdc
MD5 79bdecd9487bf5df65f21dcfb3efb6ad
BLAKE2b-256 240f53f1de3918c9bf77004a0cb71963ad4c038ed95cef666cffc391389c9ede

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: PyMca5-5.9.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 9.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.10

File hashes

Hashes for PyMca5-5.9.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 404721c3fd7b193a91a31509c3391463328cd0a211ee141c8e6f2ddfda6ab1e3
MD5 ae86b3f6d50dfbb69065bc0e34daa90a
BLAKE2b-256 2a74b10ffc37a3419de4e7de37a5875b6a0c57a2e530b4e884f688b960260e2b

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for PyMca5-5.9.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 773efc506587b87c77bb2a0f07b81f990ea167a631d406118ced26ade328f029
MD5 75fa110f974e8ed6fe9c90629f81d4a2
BLAKE2b-256 bc7ff9d695296f9c9f3c7b68c2e173c816fdcbff44692e6fd724dbc685542c9b

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyMca5-5.9.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 589c4df0a26812aa1663c4591a22d390b9aa8998eae45c8a08969b1b1cd9873f
MD5 68437842aa7e4e7912b1b16986cf00e5
BLAKE2b-256 ed66c98320770366f6e7be221ce9ea41368985170007093699bf765d447e7c76

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for PyMca5-5.9.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 939fd6ea7df843e2728e5a11b3a9514ad3fb92fc847ddb756ef8ff71ef73acaf
MD5 65543a7149d1d80ee79d5792b6831fba
BLAKE2b-256 3f8b8998ed93c4993cc72c18d0a4f9cc528e941e820f3ea8612d159c3bf8d6a7

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: PyMca5-5.9.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 9.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.10

File hashes

Hashes for PyMca5-5.9.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 1352a9e8c3f077bb2b478d8759824cf4e65b24da5b8fbaff96f402283374b4ef
MD5 b1e80c88c309c84372a598e000954cde
BLAKE2b-256 5e97bc5085a42565d5b031357436302b7026e929c70b44188c31cc9713037dc6

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for PyMca5-5.9.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 9313953fe45a48ad8e0c9b230821b7e95d4b011ae42cd7f5702c8d2b2389319c
MD5 f9e89582c17637440dd04631800dca35
BLAKE2b-256 cb52389b2ffc27c7dca155d175ba0bcca56e814efc9a7d73ae220008a10cc75c

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.0-cp38-cp38-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for PyMca5-5.9.0-cp38-cp38-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 072cd8aefa58c971b3e86a20d18cb97c45d0cbd0a0481782621013f1dbae58f4
MD5 4c8845294c03a64742ef3eebf2fa2176
BLAKE2b-256 25ccb791608c2c0c882aeaf022343e18f5684d51d2dc3f6d29ef38b610083d24

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyMca5-5.9.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 262349eb5e4f42ce4f855297fc41aedb39268ce7932afd5d04c993f8f905b44a
MD5 5c632e94d4770d47ac4918ef746d2b24
BLAKE2b-256 4f7ae91fe089ecd4ab3b03fac8ed210b02ca2ecb661360d43b00816f8245804f

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: PyMca5-5.9.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 9.6 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.10

File hashes

Hashes for PyMca5-5.9.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 fce915b86bd5e7a86ce72c85a2a180f12789cb4ba333fe16a3e29209033c53c5
MD5 26525589734382ae6f6a0b9699ae90f9
BLAKE2b-256 ecf146639b44466fa422b9d4c25b4307af8ddbbcca3ab19bbd5479df93c2a42f

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for PyMca5-5.9.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 72fc69e7d63cea4a15796a53924ced8271030317c159e826f3247659b27df717
MD5 d11bed6c92e141c23281f3c581fed1d6
BLAKE2b-256 6b564e3e389c1e73a0d7a8c24106b3549a7c9b9ae8c0150fb0f0d877e4c47fe1

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyMca5-5.9.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2895ef4d71c01da1bee50f890603aa641aaa44d52b057050247361bd225ac82f
MD5 3f7e38827df33923b5510f371a61f1c9
BLAKE2b-256 270765072998a41523e5cc34011cdffebeb31d924f319a9cb281d85aed5a93f4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page