Skip to main content

Mapping and X-Ray Fluorescence Analysis

Project description

Stand-alone application and Python tools for interactive and/or batch processing analysis of X-Ray Fluorescence Spectra. Graphical user interface (GUI) and batch processing capabilities provided

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PyMca5-5.9.2.tar.gz (15.9 MB view details)

Uploaded Source

Built Distributions

PyMca5-5.9.2-cp312-cp312-win_amd64.whl (9.5 MB view details)

Uploaded CPython 3.12 Windows x86-64

PyMca5-5.9.2-cp312-cp312-macosx_10_9_universal2.whl (10.1 MB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

PyMca5-5.9.2-cp311-cp311-win_amd64.whl (9.5 MB view details)

Uploaded CPython 3.11 Windows x86-64

PyMca5-5.9.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (11.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

PyMca5-5.9.2-cp311-cp311-macosx_10_9_universal2.whl (10.1 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

PyMca5-5.9.2-cp310-cp310-win_amd64.whl (9.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

PyMca5-5.9.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (11.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

PyMca5-5.9.2-cp310-cp310-macosx_10_9_universal2.whl (10.1 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

PyMca5-5.9.2-cp39-cp39-win_amd64.whl (9.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

PyMca5-5.9.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (11.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

PyMca5-5.9.2-cp39-cp39-macosx_10_9_universal2.whl (10.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

PyMca5-5.9.2-cp38-cp38-win_amd64.whl (9.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

PyMca5-5.9.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (11.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

PyMca5-5.9.2-cp38-cp38-macosx_11_0_universal2.whl (10.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ universal2 (ARM64, x86-64)

PyMca5-5.9.2-cp38-cp38-macosx_10_9_x86_64.whl (9.7 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

PyMca5-5.9.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (11.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

File details

Details for the file PyMca5-5.9.2.tar.gz.

File metadata

  • Download URL: PyMca5-5.9.2.tar.gz
  • Upload date:
  • Size: 15.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for PyMca5-5.9.2.tar.gz
Algorithm Hash digest
SHA256 13576fd221a38cc623258892e9295ddf1297143ac37e7c68ad6e6ceae487cd28
MD5 3ca2e993159377013938a4d61d3bc827
BLAKE2b-256 36e1eb72029c14d7144716db0e199afb113932459fa80fecee184e01afe57809

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.2-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: PyMca5-5.9.2-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for PyMca5-5.9.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 45080759f5eb5f33eb2566abfa25dd713aabc7bf85422367cc4729a9027d7680
MD5 19983c88d66e481bd11c9fd4ce8459cc
BLAKE2b-256 88e4d0ffa7bcc1cac9563ebfb50b8a79ac8e53fc8a2f445c39acccd5fd5e59a9

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.2-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for PyMca5-5.9.2-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 8829292da4b8b61d8b7c49d27b33951c3157583f8284aab2e656bf666305bff0
MD5 46926e09f04b7875f3a63851c5e5c4c3
BLAKE2b-256 450203bc893d5d755ceaa07f2995e41b54a0b1ac4bc1b1ea325fa1578c67b126

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: PyMca5-5.9.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for PyMca5-5.9.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 a9bdaa760c409d686aacfd84780559df47e5c636eb4cd72d7337fb0d5ab5bb92
MD5 e18bc66d88fc1a0099fcde55a7e14f2d
BLAKE2b-256 e563251c190bb7155c3396de4f89aa57634221aa0dd0aae6cadb8970f2a04a4d

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for PyMca5-5.9.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 bc3fae01db8f67cc917025c99e610f1b66de48617c74dc45d6e7503f68579ee3
MD5 6ccf79aa2e3f23b5255871a63696712b
BLAKE2b-256 bd5d0ab3bfa8d29e97145ad66da02113c0d500e880c44f364a3eb220bad0e4b6

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.2-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for PyMca5-5.9.2-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 2e6217c780f7acc8d720d3701c5450c8f427d7f2e37c908fa2f44d485ea68703
MD5 3af83abd5294618b6c52a2d43469d31d
BLAKE2b-256 bfab1dba29ddfbe8d0897f68fa35a648e8d56fc9a4ac876d95a86168b726fd7d

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: PyMca5-5.9.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for PyMca5-5.9.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 c9872987333c886e5dc0a2455336280da3a089c877006118429a815c2ea53aa3
MD5 99a94e73558df16fc9874b2632f770a3
BLAKE2b-256 587a13611302fc18745d5f1cc45a00a7466dfa18a17481397e17bf44ece3544d

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for PyMca5-5.9.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 0932228193f031fe02e470c63e835072ac170484df320195cee6ce6937bbcdd6
MD5 a67b98595e655ec1118f2c4e155451d0
BLAKE2b-256 1fbbfd09371eb138b7ffa190fd626e87061994760e6d3c2178d0a7fd196120df

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.2-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for PyMca5-5.9.2-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 790d6f68c2716d13d3f1d76c638438dfb736d76da021d1d1cbdf2b9d17b8159c
MD5 56dedb2b4cb0aea4d7c80946b6424b69
BLAKE2b-256 4bcf2712179054d9136762aaa6c766232daee113f4bd3f96ed077a976d32b593

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: PyMca5-5.9.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 9.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for PyMca5-5.9.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 02e09ca035ceb4269c6a3cbb1e2ba25145444e95742a3c48c134fddeaff5a145
MD5 1a29d26d96afe11f0f56f3c5c34df3c6
BLAKE2b-256 f20e6518c310efddfb088044394df4f7980aaa6d5ab27d5e1dd1897f80fe67a1

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for PyMca5-5.9.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 b5414645dbc03caf6338c4e08b98a098c06897a747e33d288a33f62a17f97a2f
MD5 87aa5b158e30a16c2ff60d8533818177
BLAKE2b-256 bd2bad14084a15c24c874022b62b0dc98e00364705a3af810d71686eae65341a

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.2-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for PyMca5-5.9.2-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 4b84bf0ce67866d0eeac785b12b0adda92b282a09ece9f3bd03b4a391b9699a7
MD5 103199836647d8678af57b4b7f52b997
BLAKE2b-256 3d39af379acfba79a5861234135104dfa6f90385382a9d6d79357b598bbca560

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: PyMca5-5.9.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 9.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for PyMca5-5.9.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 001fb2d48ddd6e52c0fcdc57cb1b5611b39c4ab6acf0ceecafc9c55c3f357de5
MD5 a331dfce618d392907adb18206b93fcf
BLAKE2b-256 3c9c52455c9a6541fc9f44793cd4a68a228190aa151bf5a98a0299b493f12ff9

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for PyMca5-5.9.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 0172498f003ff615a6ea3ea1b579201c3859344f6a77824f58acfd30d2e65e95
MD5 280eecdf0ca248f5982a2217a93eb206
BLAKE2b-256 5b64f398ac4c0865723358a10afe9bb83894f22cd6fa8c782f0e9cc3831a1b34

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.2-cp38-cp38-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for PyMca5-5.9.2-cp38-cp38-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 298dc1d578be1dc041870f5a0f9b0ebed405fa4e96b67d58338b304f045ffb75
MD5 44fc801e512e77f9152b6515a00aba29
BLAKE2b-256 9f238bbd553a012925f8002ccd2bb44e78aa39259a7fac1de02a00726f4fee31

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyMca5-5.9.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3d65797b4af06e0353dd37c7909c9a49227da2cb3ddfc251965f49217edd68cd
MD5 1d49c6eb599c635a1e8a2f3f0f6ec5df
BLAKE2b-256 cb3d2f761c57d04843696d9f65d62e19cf04f6c836dd721bf0129707e1d87ddb

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for PyMca5-5.9.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 11240ca065b31094282dff70c7331121606e5cbd89aae81846db324ee16d89e2
MD5 8eca76f687d2ed37302e77b07a97d16d
BLAKE2b-256 fa6b7278015c0f3dd26bcc62b27f94612bfd4ce196b1e6afb6c0a9072b5bb750

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page