Skip to main content

A Python package for implementing and solving Network form games.

Project description

PyNFG is a Python package for modeling and solving Network Form Games. It is distributed under the GNU Affero GPL.

1. Welcome

PyNFG is designed to make it easy for researchers to model strategic environments using the Network Form Game (NFG) formalism developed by David Wolpert with contributions from Ritchie Lee, James Bono and others. The main idea of the NFG framework is to translate a strategic environment into the language of probabilistic graphical models. The result is a more intuitive, powerful, and user-friendly framework than the extensive form.

For an introduction to the semi-NFG framework and Level-K D-Relaxed Strategies:

  • Lee, R. and Wolpert, D.H., “Game-Theoretic Modeling of Human Behavior in Mid-Air Collisions”, Decision-Making with Imperfect Decision Makers, T. Guy, M. Karny and D.H.Wolpert (Ed.’s), Springer (2011).

For an introduction to iterated semi-NFG framework and Level-K Reinforcement Learning:

  • Ritchie Lee, David H. Wolpert, James Bono, Scott Backhaus, Russell Bent, Brendan Tracey. “Counter-Factual Reinforcement Learning: How to Model Decision-Makers That Anticipate The Future.”
  • Scott Backhaus, Russell Bent, James Bono, Ritchie Lee, Brendan Tracey, David Wolpert, Dongping Xie, Yildiray Yildiz “Cyber-Physical Security: A Game Theory Model of Humans Interacting over Control Systems.”

For an introduction to Predictive Game Theory:

2. Installation

PyNFG requires the following packages: Numpy, Scipy, Matplotlib, Networkx, and PyGraphviz. Pygraphviz and Networkx are used only for visualizing the Directed Acyclic Graphs (DAGs) that represent semi-NFGs.

To install from source: Download the source from Unzip. Then from the directory with the unzipped files, do “python install”.

3. Questions and Comments

The documentation is hosted at

Please contact James Bono for questions about using PyNFG in your research, reporting bug fixes, offering suggestions, etc.

4. Contributors

PyNFG is authored by James Bono with contributions by Dongping Xie. The project has received valuable feedback from Justin Grana, David Wolpert, Adrian Agogino, Juan Alonso, Brendan Tracey, Alice Fan, Dominic McConnachie, Kee Palopo, Huu Huynh, and others.

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for PyNFG, version
Filename, size File type Python version Upload date Hashes
Filename, size PyNFG- (185.7 kB) File type Source Python version None Upload date Hashes View

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring DigiCert DigiCert EV certificate Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page