Skip to main content

An interface to Normaliz

Project description

Build Status

PyNormaliz - A python interface to Normaliz

PyNormaliz provides an interface to Normaliz via libNormaliz. It offers the complete functionality of Normaliz, and can be used interactively from python. For a first example, see this introduction by Richard Sieg (Slightly outdated: for the installation follow the instructions below).

A full documentation is contained in Appendix E of the Normaliz manual.

Requirements

The source packages of the Normaliz releases contain PyNormaliz.

Installation

The PyNormaliz install script assumes that you have executed

./install_normaliz_with_eantic.sh

within the Normaliz directory. To install PyNormaliz navigate to the Normaliz directory and type

./install_pynormaliz.sh --user

Usage

The command Cone creates a cone (and a lattice), and the member functions of Cone compute its properties. For a full list of input and output properties, see the Normaliz manual.

Start by

import PyNormaliz
from PyNormaliz import *

To create a simple example, type

C = Cone(cone = [[1,0],[0,1]])

All possible Normaliz input types can be given as keyword arguments.

The member functions allow the computation of the data of our cone. For example,

C.HilbertBasis()

returns what its name says:

[[0, 1], [1, 0]]

is the matrix of the two Hilbert basis vectors. The output matrices of PyNormaliz can be used also in Normaliz input files.

One can pass options to the compute functions as in

C.HilbertSeries(HSOP = True)

Note that some Normaliz output types must be specially encoded for python. Our Hilbert Series is returned as

[[1], [1, 1], 0]

to be read as follows: [1] is the numerator polynomial, [1,1] is the vector of exponents of t that occur in the denominator, which is (1-t)(1-t) in our case, and 0 is the shift. So the Hilbert series is given by the rational function 1/(1-t)(1-t). (Also see this introduction.) But we can use

print_series(C.HilbertSeries(HSOP = True))

with the result

    (1)
---------
(1 - t)^2

One can also compute several data simultaneously and specify options ("PrimalMode" only added as an example, not because it is particularly useful here):

C.Compute("LatticePoints", "Volume", "PrimalMode")

Then

C.Volume()

with the result

1

This is the lattice length of the diagonal in the square. The euclidean length, that has been computed simultaneously, is returned by

C.EuclideanVolume()

with the expected value

'1.4142'

Floating point numbers are formatted with 4 decimal places and returned as strings (may change). If you want the euclideal volume at the maximum floating point precision, you can use the low level interface which is intermediate between the class Cone and libnormaliz:

NmzResult(C.cone,"EuclideanVolume")
1.4142135623730951

One can find out whether a single goal has been computed by asking

C.IsComputed("Automorphisms")
False

If you use Compute instead of IsComputed, then Normaliz tries to compute the goal, and there are situations in which the computation is undesirable.

Algebraic polyhedra can be computed by PyNormaliz as well:

nf = [ "a2-2", "a", "1.4+/-0.1" ]
D = Cone( number_field = nf, cone = [["1/7a+3/2", "-5a"],["4/83a-1","97/81"]])

It is important to note that fractions and algebraic numbers must be encoded as strings for the input.

S = D.SupportHyperplanes()
S
[['-1470/433*a+280/433', '-1'], ['-32204/555417*a-668233/555417', '-1']]

Very hard to read! Somewhat better:

print_matrix(S)

          -1470/433*a+280/433 -1
-32204/555417*a-668233/555417 -1

But we can also get floating point approximations:

print_matrix(D.SuppHypsFloat())

-4.1545 -1.0000
-1.2851 -1.0000

By using Python functions, the functionality of Normaliz can be extended. For example,

def intersection(cone1, cone2):
    intersection_ineq = cone1.SupportHyperplanes()+cone2.SupportHyperplanes()
    intersection_equat = cone1.Equations()+cone2.Equations()
    C = Cone(inequalities = intersection_ineq, equations = intersection_equat)
    return C

computes the intersection of two cones. So

C1 = Cone(cone=[[1,2],[2,1]])
C2 = Cone(cone=[[1,1],[1,3]])
intersection(C1,C2).ExtremeRays()

yeilds the result

[[1, 1], [1, 2]]

If you want to see what Normaliz is doing (especually in longer computations) activate the terminal output by

C.setVerbose(True)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pynormaliz-2.24.tar.gz (322.2 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

pynormaliz-2.24-cp314-cp314t-musllinux_1_2_x86_64.whl (75.9 MB view details)

Uploaded CPython 3.14tmusllinux: musl 1.2+ x86-64

pynormaliz-2.24-cp314-cp314t-musllinux_1_2_i686.whl (72.4 MB view details)

Uploaded CPython 3.14tmusllinux: musl 1.2+ i686

pynormaliz-2.24-cp314-cp314t-musllinux_1_2_aarch64.whl (74.9 MB view details)

Uploaded CPython 3.14tmusllinux: musl 1.2+ ARM64

pynormaliz-2.24-cp314-cp314t-manylinux_2_26_i686.manylinux_2_28_i686.whl (71.7 MB view details)

Uploaded CPython 3.14tmanylinux: glibc 2.26+ i686manylinux: glibc 2.28+ i686

pynormaliz-2.24-cp314-cp314t-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (76.4 MB view details)

Uploaded CPython 3.14tmanylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

pynormaliz-2.24-cp314-cp314t-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (75.7 MB view details)

Uploaded CPython 3.14tmanylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

pynormaliz-2.24-cp314-cp314t-macosx_11_0_arm64.whl (9.4 MB view details)

Uploaded CPython 3.14tmacOS 11.0+ ARM64

pynormaliz-2.24-cp314-cp314t-macosx_10_15_x86_64.whl (10.4 MB view details)

Uploaded CPython 3.14tmacOS 10.15+ x86-64

pynormaliz-2.24-cp314-cp314-musllinux_1_2_x86_64.whl (75.9 MB view details)

Uploaded CPython 3.14musllinux: musl 1.2+ x86-64

pynormaliz-2.24-cp314-cp314-musllinux_1_2_i686.whl (72.4 MB view details)

Uploaded CPython 3.14musllinux: musl 1.2+ i686

pynormaliz-2.24-cp314-cp314-musllinux_1_2_aarch64.whl (74.9 MB view details)

Uploaded CPython 3.14musllinux: musl 1.2+ ARM64

pynormaliz-2.24-cp314-cp314-manylinux_2_26_i686.manylinux_2_28_i686.whl (71.7 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.26+ i686manylinux: glibc 2.28+ i686

pynormaliz-2.24-cp314-cp314-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (76.4 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

pynormaliz-2.24-cp314-cp314-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (75.7 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

pynormaliz-2.24-cp314-cp314-macosx_11_0_arm64.whl (9.4 MB view details)

Uploaded CPython 3.14macOS 11.0+ ARM64

pynormaliz-2.24-cp314-cp314-macosx_10_15_x86_64.whl (10.4 MB view details)

Uploaded CPython 3.14macOS 10.15+ x86-64

pynormaliz-2.24-cp313-cp313-musllinux_1_2_x86_64.whl (75.9 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ x86-64

pynormaliz-2.24-cp313-cp313-musllinux_1_2_i686.whl (72.4 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ i686

pynormaliz-2.24-cp313-cp313-musllinux_1_2_aarch64.whl (74.9 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ ARM64

pynormaliz-2.24-cp313-cp313-manylinux_2_26_i686.manylinux_2_28_i686.whl (71.7 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.26+ i686manylinux: glibc 2.28+ i686

pynormaliz-2.24-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (76.4 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

pynormaliz-2.24-cp313-cp313-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (75.7 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

pynormaliz-2.24-cp313-cp313-macosx_11_0_arm64.whl (9.4 MB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

pynormaliz-2.24-cp313-cp313-macosx_10_13_x86_64.whl (10.4 MB view details)

Uploaded CPython 3.13macOS 10.13+ x86-64

pynormaliz-2.24-cp312-cp312-musllinux_1_2_x86_64.whl (75.9 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ x86-64

pynormaliz-2.24-cp312-cp312-musllinux_1_2_i686.whl (72.4 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ i686

pynormaliz-2.24-cp312-cp312-musllinux_1_2_aarch64.whl (74.9 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ ARM64

pynormaliz-2.24-cp312-cp312-manylinux_2_26_i686.manylinux_2_28_i686.whl (71.7 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.26+ i686manylinux: glibc 2.28+ i686

pynormaliz-2.24-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (76.4 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

pynormaliz-2.24-cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (75.7 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

pynormaliz-2.24-cp312-cp312-macosx_11_0_arm64.whl (9.4 MB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

pynormaliz-2.24-cp312-cp312-macosx_10_13_x86_64.whl (10.4 MB view details)

Uploaded CPython 3.12macOS 10.13+ x86-64

pynormaliz-2.24-cp311-cp311-musllinux_1_2_x86_64.whl (75.9 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ x86-64

pynormaliz-2.24-cp311-cp311-musllinux_1_2_i686.whl (72.4 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ i686

pynormaliz-2.24-cp311-cp311-musllinux_1_2_aarch64.whl (74.9 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ ARM64

pynormaliz-2.24-cp311-cp311-manylinux_2_26_i686.manylinux_2_28_i686.whl (71.7 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.26+ i686manylinux: glibc 2.28+ i686

pynormaliz-2.24-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (76.4 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

pynormaliz-2.24-cp311-cp311-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (75.7 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

pynormaliz-2.24-cp311-cp311-macosx_11_0_arm64.whl (9.4 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

pynormaliz-2.24-cp311-cp311-macosx_10_9_x86_64.whl (10.4 MB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

pynormaliz-2.24-cp310-cp310-musllinux_1_2_x86_64.whl (75.9 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ x86-64

pynormaliz-2.24-cp310-cp310-musllinux_1_2_i686.whl (72.4 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ i686

pynormaliz-2.24-cp310-cp310-musllinux_1_2_aarch64.whl (74.9 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ ARM64

pynormaliz-2.24-cp310-cp310-manylinux_2_26_i686.manylinux_2_28_i686.whl (71.7 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.26+ i686manylinux: glibc 2.28+ i686

pynormaliz-2.24-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (76.4 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

pynormaliz-2.24-cp310-cp310-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (75.7 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

pynormaliz-2.24-cp310-cp310-macosx_11_0_arm64.whl (9.4 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

pynormaliz-2.24-cp310-cp310-macosx_10_9_x86_64.whl (10.4 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

pynormaliz-2.24-cp39-cp39-musllinux_1_2_x86_64.whl (75.9 MB view details)

Uploaded CPython 3.9musllinux: musl 1.2+ x86-64

pynormaliz-2.24-cp39-cp39-musllinux_1_2_i686.whl (72.4 MB view details)

Uploaded CPython 3.9musllinux: musl 1.2+ i686

pynormaliz-2.24-cp39-cp39-musllinux_1_2_aarch64.whl (74.9 MB view details)

Uploaded CPython 3.9musllinux: musl 1.2+ ARM64

pynormaliz-2.24-cp39-cp39-manylinux_2_26_i686.manylinux_2_28_i686.whl (71.7 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.26+ i686manylinux: glibc 2.28+ i686

pynormaliz-2.24-cp39-cp39-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (76.4 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

pynormaliz-2.24-cp39-cp39-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (75.7 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

pynormaliz-2.24-cp39-cp39-macosx_11_0_arm64.whl (9.4 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

pynormaliz-2.24-cp39-cp39-macosx_10_9_x86_64.whl (10.4 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

File details

Details for the file pynormaliz-2.24.tar.gz.

File metadata

  • Download URL: pynormaliz-2.24.tar.gz
  • Upload date:
  • Size: 322.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pynormaliz-2.24.tar.gz
Algorithm Hash digest
SHA256 1e91cdf24c57c4472cb8f0170fe9041e8366fc7d598ec214b6179f6239f8899c
MD5 53de2fab71685793ca6407fcce7c36bc
BLAKE2b-256 da2480bdb104c69b8078378162b3122dc70b386ee31d9f496052d11a3a36d4bc

See more details on using hashes here.

File details

Details for the file pynormaliz-2.24-cp314-cp314t-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pynormaliz-2.24-cp314-cp314t-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 99544319e4d58c013b4b4fd1ca3046ca9fd73c35f722aa572585071d183ad136
MD5 f1e1e815f0df9e13131e20287edccf2e
BLAKE2b-256 2f8346f2b61f2de567dfde15a163ff21b66ccd9ec42e568f7b4fa8bf615c1d3c

See more details on using hashes here.

File details

Details for the file pynormaliz-2.24-cp314-cp314t-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for pynormaliz-2.24-cp314-cp314t-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 d344cf97a34e69a24e66718d92e541beb6840ab2967cc719dd2c409865951582
MD5 10b4329c713e666ccb073559c1c66081
BLAKE2b-256 99903a7992e9c0ab3036d1665a29883b1c2db63e05e267281dcbd2327b5f0069

See more details on using hashes here.

File details

Details for the file pynormaliz-2.24-cp314-cp314t-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for pynormaliz-2.24-cp314-cp314t-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 f2fb30ada6b09db6064840429fb0a965ac3c2ccd634f6ac18ed0ad83fc7cff48
MD5 f8760aa0f6ce4a2c223e9aeda87c5ea6
BLAKE2b-256 7366979b724bd18258644cf7656b8d5d788dc6238c691efef2fa07007508848d

See more details on using hashes here.

File details

Details for the file pynormaliz-2.24-cp314-cp314t-manylinux_2_26_i686.manylinux_2_28_i686.whl.

File metadata

File hashes

Hashes for pynormaliz-2.24-cp314-cp314t-manylinux_2_26_i686.manylinux_2_28_i686.whl
Algorithm Hash digest
SHA256 0e7295e3a24a1a396e6fa3be810b77fc69492310b3f7591e584c6190802ecee4
MD5 03036776d577b9eaab64c6cde36c44a4
BLAKE2b-256 e0ada95d29b2de09a63fe97d263e1918ee4d656bb8bd40b5fff1790f8b8c9443

See more details on using hashes here.

File details

Details for the file pynormaliz-2.24-cp314-cp314t-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pynormaliz-2.24-cp314-cp314t-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 514636ef654b9f30becc0b20fc44dc449d0c55d7d09b55c8347b9c856dedbf8a
MD5 d71a71531f5f54d961236c3bc1f9dbbf
BLAKE2b-256 ec4c4c6b729f90b4d0d12b642089536a29c021c3f437004c9cb8e9384e112f00

See more details on using hashes here.

File details

Details for the file pynormaliz-2.24-cp314-cp314t-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pynormaliz-2.24-cp314-cp314t-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 5fae510755c8c6d3fc1341c8526958c937ab9168d607ecdef044ce03f7f7bbea
MD5 7b7a0a52a21de19ed43a1cfaf91ef32f
BLAKE2b-256 13a803f109861dd6c959e0a01a242a671ccbe9f883c6c0ff9aae34c1170f9eb3

See more details on using hashes here.

File details

Details for the file pynormaliz-2.24-cp314-cp314t-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pynormaliz-2.24-cp314-cp314t-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d1579d326a1b4b91ce731db6d8b58082fb3236d85ea4bca542ccfc4f1f6ac8f5
MD5 1ad9a1ca8cb8d7588de69d22e3c187b7
BLAKE2b-256 63dc028af714cd148a0ff6c6cacb816696838c4de52927ad382060c9df37f7de

See more details on using hashes here.

File details

Details for the file pynormaliz-2.24-cp314-cp314t-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pynormaliz-2.24-cp314-cp314t-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 4f4c7a09ad7f6905830398c15e34dfbd151841f87cfaee4f02754567f4843a9f
MD5 07c096e7a21e319f111d9a20971bd664
BLAKE2b-256 75545fa6bc976966c94357f28b0d96ba831bcc6789e5778ae16014ae8c0262b6

See more details on using hashes here.

File details

Details for the file pynormaliz-2.24-cp314-cp314-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pynormaliz-2.24-cp314-cp314-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 2dc6dd4184d94390597f6b00077258003daef7b0fe1644c4f628a838374575e4
MD5 828f8e49370e7a79bd678deeb7095ccd
BLAKE2b-256 b62e7732f4b304a24f2466814f9046c3b3bdc3b6dfa609dc9f8d858cbea8ceff

See more details on using hashes here.

File details

Details for the file pynormaliz-2.24-cp314-cp314-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for pynormaliz-2.24-cp314-cp314-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 51a00e23b33735b7f804addd7c1bdb00311f5df64e5bd634b63bb3af5356ca9f
MD5 7e9b2436dadbf32cbd60c55f47364cd1
BLAKE2b-256 3ff8cda1afd92474604cf3b9b3a448f5d2f7ae83758226fbf65557a013f83b0c

See more details on using hashes here.

File details

Details for the file pynormaliz-2.24-cp314-cp314-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for pynormaliz-2.24-cp314-cp314-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 137534adb3146af7334b4aaf5d88082149d5b545319ae023e3098e6c88c3037e
MD5 5b85796c4cb68dd7854a5ade8213810d
BLAKE2b-256 053ffa104342d7221a72779b48798dd58e7bc2d7963ab82326664f9b302ad166

See more details on using hashes here.

File details

Details for the file pynormaliz-2.24-cp314-cp314-manylinux_2_26_i686.manylinux_2_28_i686.whl.

File metadata

File hashes

Hashes for pynormaliz-2.24-cp314-cp314-manylinux_2_26_i686.manylinux_2_28_i686.whl
Algorithm Hash digest
SHA256 b78773d8e4eed39e81d8aa8818978d9673ad75360b7e04db8e1161f5506f9479
MD5 0a8ef9cb062dae71d43546166c74f2e0
BLAKE2b-256 b2fd9dbf921f3a9acbf001a2f58af4872869bbcef0658d0244ff226bef7ce6f9

See more details on using hashes here.

File details

Details for the file pynormaliz-2.24-cp314-cp314-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pynormaliz-2.24-cp314-cp314-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 722e16b4b36440c281b609edeaefc62c604853a9b964fbdd69accdd86dae99a2
MD5 69ee8a08d5d8171ccd45e2614d40ce36
BLAKE2b-256 aa965cbe357e418306b98d16c2a15eec84c2a8f62dc0279a5ad4d44a63978fca

See more details on using hashes here.

File details

Details for the file pynormaliz-2.24-cp314-cp314-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pynormaliz-2.24-cp314-cp314-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 ad998580f6c5e54ea31444d6e651127432612041b83cafffe7b5f87e6142967a
MD5 607ac4625a0ead8e8c57b0bb20d22e94
BLAKE2b-256 ab12f361ff0264c6467b6e233cc5ea42ba9d58f510d2a20f448d6fcacc1a9bc6

See more details on using hashes here.

File details

Details for the file pynormaliz-2.24-cp314-cp314-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pynormaliz-2.24-cp314-cp314-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cad1cdf4c48d3fc0611e72c91028118a4d9f88393f7ec1a91e65b8b95a9ab220
MD5 a21a5343d80c31bcafcaede90c0ac691
BLAKE2b-256 e5e6ddbaafb72cc4cd771eb62981a37a68c54dbde54cb30bb933a0774bbbba17

See more details on using hashes here.

File details

Details for the file pynormaliz-2.24-cp314-cp314-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pynormaliz-2.24-cp314-cp314-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 e5764fe8b0c5bc38ddc3b832996e2e472bbb682e6cd1f3a2d2e7a2314ff8f48d
MD5 53d1f310c582ece142aa82d56e3acb76
BLAKE2b-256 d07a1e7e9b9e6a1f92b83c70c097c4e258138ae48346ee2f3146e9311b4a268a

See more details on using hashes here.

File details

Details for the file pynormaliz-2.24-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pynormaliz-2.24-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 413e23e513b27c5398a2f004869282ab5ab099db215e0d2405635ffb7b03de12
MD5 149af7ba4daa81360d43b67feee9f24e
BLAKE2b-256 1fa73c0006738e543c594048425b0d66e825e2ca5bb1be65c3d69e2e69f36acf

See more details on using hashes here.

File details

Details for the file pynormaliz-2.24-cp313-cp313-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for pynormaliz-2.24-cp313-cp313-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 1ddc37d93df48dd292ea62e4ff2684f456e89d522d058dbe3ab0616ca5585574
MD5 b81a9b690c7c85dd484ab8cc315cfcaf
BLAKE2b-256 46d0648469c69bec04a71c64d84e4cf56c3cee832ade3e854e00fc0b57fa6e4f

See more details on using hashes here.

File details

Details for the file pynormaliz-2.24-cp313-cp313-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for pynormaliz-2.24-cp313-cp313-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 42f416a9bc0790130ba98301aea5ca1b4083cd74449b9518b9faff49a0db7230
MD5 e0e02085a745f9d76df7e52574d9f010
BLAKE2b-256 4f1c743598404342a34bebe12afaf43f8b69918e125b3a4c7b0225c33cfb5014

See more details on using hashes here.

File details

Details for the file pynormaliz-2.24-cp313-cp313-manylinux_2_26_i686.manylinux_2_28_i686.whl.

File metadata

File hashes

Hashes for pynormaliz-2.24-cp313-cp313-manylinux_2_26_i686.manylinux_2_28_i686.whl
Algorithm Hash digest
SHA256 0f5959cbe63efeb66a0e0c77b3102428aae43ca2afc24997bebc4a4a6fd7cb63
MD5 258344197bb011b0cb5352f9b26d3c38
BLAKE2b-256 e298ed32e90169d88bddec1eea2df8e251127db3f038ebeab88df99ce1278c06

See more details on using hashes here.

File details

Details for the file pynormaliz-2.24-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pynormaliz-2.24-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 f4a14050fe86a01e8bb2255829841c44e60bdfcb39f0e6693f2d9de3a69689f9
MD5 c2606bd0d7060c50efcdf118186de3bd
BLAKE2b-256 8ea05265eac6c852b7122e6dd448e7b06e6bf9a2c212b61d4264ab38d0703601

See more details on using hashes here.

File details

Details for the file pynormaliz-2.24-cp313-cp313-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pynormaliz-2.24-cp313-cp313-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 fbf651f524a034ac480a03f6526df04d02c5064d9ad45feb60cafba5171a3844
MD5 3542ff0859237e4dfa1a20617307ba69
BLAKE2b-256 e093da7c1baec6d17a8c9be73a4b03cdb0c9a30cb205913a19068ce3513fb31c

See more details on using hashes here.

File details

Details for the file pynormaliz-2.24-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pynormaliz-2.24-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 32d00ce5f24397947076046032e66d48124ece6436309087c9d54c98c758011c
MD5 b0376a8334b11b15dd33d20bbf4e9138
BLAKE2b-256 224b248d4918e80030d89a51ca5a34df9eb73fb9d63f0c79bfd0a1bd7c4b3d5b

See more details on using hashes here.

File details

Details for the file pynormaliz-2.24-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pynormaliz-2.24-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 fb04479060e09f0500cfa281a83bb5385de9008d2e62171af44b333c39b5a0a7
MD5 232af424b28a7c929fc36bb8bccb9cb3
BLAKE2b-256 47793886d00f17712de8a540a9bada272f95d39f919b0e6584265cb77b8f32be

See more details on using hashes here.

File details

Details for the file pynormaliz-2.24-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pynormaliz-2.24-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 59de81d09cd3cb0c4b87cfb54bee4cfd979faec2b94ec86dc0d6ddcf49742055
MD5 2e9c3dd171fee5065763fa48f19efb57
BLAKE2b-256 5b97e6712bfa794a5066daf71bebd26a78e680f153a1c252d1d40f989403b53a

See more details on using hashes here.

File details

Details for the file pynormaliz-2.24-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for pynormaliz-2.24-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 2e3593e745b380e24826598ce6b1945d6b38958ed14b4173460c409c037ef53d
MD5 f11d2ffcc6102a0664b91b9f08edd80e
BLAKE2b-256 45653382c519d74ede7206ea09ebce046d02de014588f5f807ee4d767dfbebcc

See more details on using hashes here.

File details

Details for the file pynormaliz-2.24-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for pynormaliz-2.24-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 1d8f2fd50864f0c0e631165b3bd6276b2c99e2258d5d0eda3e6fd8cbe23303e6
MD5 acfad691e02a126e105412c9e46ffa31
BLAKE2b-256 dcdf1af260724a3666ee44b400657fcac33f27bf7edf66bb50461cc6c28fc879

See more details on using hashes here.

File details

Details for the file pynormaliz-2.24-cp312-cp312-manylinux_2_26_i686.manylinux_2_28_i686.whl.

File metadata

File hashes

Hashes for pynormaliz-2.24-cp312-cp312-manylinux_2_26_i686.manylinux_2_28_i686.whl
Algorithm Hash digest
SHA256 be1e48de654c4051bb8f8d540a217ce9725f514e05d314eae60349fe4ccf102f
MD5 e23c9f8e994369b1520bac6d31d06bca
BLAKE2b-256 cde2c56ce0ecbf096c6b0a77c4b955b41ae1debd4796cdee84d564e86d5a7540

See more details on using hashes here.

File details

Details for the file pynormaliz-2.24-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pynormaliz-2.24-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 e0b6033ab2dfce174578c898cf5a956b6e14ac25570e4c831313f76431d9c230
MD5 621a4b3771531b9c01100cd42dfe3475
BLAKE2b-256 447a85b661c79f334602588a06bcb693bb3b18f775adb46b236a67ef09591b8b

See more details on using hashes here.

File details

Details for the file pynormaliz-2.24-cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pynormaliz-2.24-cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 c8e0018a0ff26a0800f6f7aba0fa300afc9e0d8c772198dc934d189fb09e7f58
MD5 be8504ade1570142e6ee038ea52e149f
BLAKE2b-256 3bbd6cbe0ea1cc1c5481f010c6209e4dd2b385821af95abc53256758e2e3dc47

See more details on using hashes here.

File details

Details for the file pynormaliz-2.24-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pynormaliz-2.24-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cac5e3d78f6b56c142c807e984b7dfb95d1aef3be0df8ae43d4684a49e99f630
MD5 d5ac6f75d991025a5baedfca53b90397
BLAKE2b-256 937d96e9b303bf0f8550bf2a71563ebebfcb27ba7495d5ea59a470c33e24edf5

See more details on using hashes here.

File details

Details for the file pynormaliz-2.24-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pynormaliz-2.24-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 fac7f5ad2aafe8337e4564b30c83a99c85a8026423ef292e9b4c525b28206d21
MD5 e5188cb0b6629b39db107ede665ca614
BLAKE2b-256 5f5da2a18c77025386692799de82f2877ad9d75a19edd0c8e5f79ae465d31dfe

See more details on using hashes here.

File details

Details for the file pynormaliz-2.24-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pynormaliz-2.24-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 9684058c80975512d3f5360cd474bb72f66e254249a919a295a10c70c963d5aa
MD5 e1c90e539794638b755b1d10341ffd64
BLAKE2b-256 8a56de668414f5228884a6a5c4ee6dbc53ce578e147cf1a11400e56d56ace07c

See more details on using hashes here.

File details

Details for the file pynormaliz-2.24-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for pynormaliz-2.24-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 e5d5caadf4b416830b8047fcc77b6cb2aee9d95232ba50cf179b368d5a1e7f1a
MD5 cbd38fde655f8c1d9f9b36a75d12be5f
BLAKE2b-256 dc11ff9592c2367ee2640c0d303befdd10491884eab262d83da19be5a6197e60

See more details on using hashes here.

File details

Details for the file pynormaliz-2.24-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for pynormaliz-2.24-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 9a61fe28302e810b385c9f6923ceb79ee784c07cfeb5f9d833636e03152cfecf
MD5 a6f482e79fdea44c79f9a1fb56a11875
BLAKE2b-256 992e703c93ef0a61cd837325564cf0cb4064da2c022fdf3f1a08ff9a0db6facf

See more details on using hashes here.

File details

Details for the file pynormaliz-2.24-cp311-cp311-manylinux_2_26_i686.manylinux_2_28_i686.whl.

File metadata

File hashes

Hashes for pynormaliz-2.24-cp311-cp311-manylinux_2_26_i686.manylinux_2_28_i686.whl
Algorithm Hash digest
SHA256 28806bc0d02db797adb9958fce791e33751df42f5e53b30804f99aa884f91a07
MD5 ef6e0f7cbf4d77d0fa3ef30e945d40e4
BLAKE2b-256 bf1332e6b1828a9472ba473e5d9a7c8519466e835099d44982d0a16920cfacac

See more details on using hashes here.

File details

Details for the file pynormaliz-2.24-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pynormaliz-2.24-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 10d7431e73d3d4cd885b7f1007ff82500fa111ab5d31c167dda87dc30ae89152
MD5 9ba01256cfde9c406744cdf8b945dcd3
BLAKE2b-256 a402bb2cbca913a7c97ce69bdf3ff7cd3a434669ff41322ed8e76f7111677c85

See more details on using hashes here.

File details

Details for the file pynormaliz-2.24-cp311-cp311-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pynormaliz-2.24-cp311-cp311-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 c2334d326d3d7b415a804887852485eb48acb149b19a647c3fcab17e6da5147e
MD5 fe0130ee7606b459cb5aacbee0db4c70
BLAKE2b-256 79f07bd0f2e12e82291efb20caeb5745f0a109ae5ce6f6ab05e2388aed86a196

See more details on using hashes here.

File details

Details for the file pynormaliz-2.24-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pynormaliz-2.24-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e1f44e7a0e5f1098bf9981aa74250957deb14a85d7796a21fa7e08edfa19c8d7
MD5 b75ecfecf1482eb6753ebdf5fe1f5021
BLAKE2b-256 b5512030ca5d0cd19584dd6b870dab446d3d7d5f4a6612f8b183a1ab30608a17

See more details on using hashes here.

File details

Details for the file pynormaliz-2.24-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pynormaliz-2.24-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d2f79db228cc7ef67296469dbde1efc19db1c66de8ea278602a7678ee69c85bc
MD5 0bb93ae5b7503c451b4ebc6cabfe0a54
BLAKE2b-256 bb755f1b0b1aa30c1abe040c4753bc5491d2ad7797432971e1792c2a070880ba

See more details on using hashes here.

File details

Details for the file pynormaliz-2.24-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pynormaliz-2.24-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 dc3381de362fa9160aab4422f44cb5ba15429f27793da479fd68c71c7f543820
MD5 387eff1546d696862a5f058c30dddc6c
BLAKE2b-256 d176f6851d27952c0d653c1757798c93e712b740430373b5002ffafb20c6c6f4

See more details on using hashes here.

File details

Details for the file pynormaliz-2.24-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for pynormaliz-2.24-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 a064c7697e311cbd449422b34dc0d1425957229d5e91d74a41d477ed34032432
MD5 63459136b175ca7075ff1912a06b04fd
BLAKE2b-256 73437c6f1701dc016f98f9a51492a6441d99abe69078c6d5d426a6a167e7fc65

See more details on using hashes here.

File details

Details for the file pynormaliz-2.24-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for pynormaliz-2.24-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 fa69dae69824224440ccad499a7c1ca3712210f5180f8c125150e2777ff009d0
MD5 3fbfc5114a9202ddcb4a95d1a98ba6b2
BLAKE2b-256 53addacc9bf9db4108a899f89eeaf8e4795eef672fdf484daea076aed120cc10

See more details on using hashes here.

File details

Details for the file pynormaliz-2.24-cp310-cp310-manylinux_2_26_i686.manylinux_2_28_i686.whl.

File metadata

File hashes

Hashes for pynormaliz-2.24-cp310-cp310-manylinux_2_26_i686.manylinux_2_28_i686.whl
Algorithm Hash digest
SHA256 22c721be933d72c5a2ea30ae2c0cb1eb6ae13ec470f7fc3fa989db7bf987207b
MD5 8e6b2a2302cbdb463b04e214cd72df9f
BLAKE2b-256 fc385dc3e112829502ea95d990a8f3a4275064ef30fd4eed1bda466fa0e72638

See more details on using hashes here.

File details

Details for the file pynormaliz-2.24-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pynormaliz-2.24-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 c4ad27619e753e1e2ef43baf370f06abd8761e9f23fa0931f3bae41fbdd1cedb
MD5 90b2f7c5dc29b69e8b1170cb50577bd9
BLAKE2b-256 e2df21632d4ab3e753db78ac04f25eb4c3514af7b7025272ef774e5b97fc1534

See more details on using hashes here.

File details

Details for the file pynormaliz-2.24-cp310-cp310-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pynormaliz-2.24-cp310-cp310-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 d05c0ddc80e6716175ee403c2045e6c48fb0acdfefe5318a5fd6b4ea696b4e63
MD5 2a77d0beb2246a58ef243095d109ba93
BLAKE2b-256 a3ecbf07c4a14ffc3d9ab10867fe0946aae0adcd362f7daaefb01096c65eac11

See more details on using hashes here.

File details

Details for the file pynormaliz-2.24-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pynormaliz-2.24-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 712f29235f4fc921f3b559bd3828cc313ad3e9cacc0a90481a91ec22f93547bd
MD5 b9bc2b4c920295b2bb93202dadb6607d
BLAKE2b-256 d3ae1df70d34bc63a032a038f56e12ed5d769c947f59122c032f515af4f49874

See more details on using hashes here.

File details

Details for the file pynormaliz-2.24-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pynormaliz-2.24-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 326c6a50f0ebbdedda8af776f2b6d81138531f0ccddc8fb5fcd1f18bd81899d5
MD5 f7e43fec02a640f58aa26edbc7909b19
BLAKE2b-256 5d6d18ed55a6e66359cdb7d84bc2b26f6a707671d702622c378a70bf678b8827

See more details on using hashes here.

File details

Details for the file pynormaliz-2.24-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pynormaliz-2.24-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 ece56b93b88c6e8bb9391a9d3b1479c84965ad405e10b706bce632195ac66d9c
MD5 058605822c3a401d127f8d83a24772e9
BLAKE2b-256 b26684736488236c249d4ff495ec3ff81d4f3ed4a78f1f7ef4e7f09ea14de7f9

See more details on using hashes here.

File details

Details for the file pynormaliz-2.24-cp39-cp39-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for pynormaliz-2.24-cp39-cp39-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 a7b6f1e88e2bb185fdf53d10372f14d50158af771c818a332331ae34a85061bf
MD5 6b3d178ac3139e0cb0c46e2569f96cc2
BLAKE2b-256 88aa93d067ef602f25d02f1ee62aba203d7c3e1514b4825e373a5e1b2f9aa49d

See more details on using hashes here.

File details

Details for the file pynormaliz-2.24-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for pynormaliz-2.24-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 e4dcbb850562130ab367688abc213768ffbe5e275cae041abd2496c9cf73402a
MD5 0107529463925537d62bd2f076ce9045
BLAKE2b-256 d64a4c7fcc04f6dc9f9705859d2a897333585180bf0bee7c03c549cd454bb531

See more details on using hashes here.

File details

Details for the file pynormaliz-2.24-cp39-cp39-manylinux_2_26_i686.manylinux_2_28_i686.whl.

File metadata

File hashes

Hashes for pynormaliz-2.24-cp39-cp39-manylinux_2_26_i686.manylinux_2_28_i686.whl
Algorithm Hash digest
SHA256 c69b86602a5be5de00c5d970aa24c197c8730106a8f0a4f7e966a63ca41b268c
MD5 1c69616461e270af345af10f912d7e84
BLAKE2b-256 340d9f96ab77826d817a29c1a457ac31fe026c52956bd12303c5b584d3fc3ceb

See more details on using hashes here.

File details

Details for the file pynormaliz-2.24-cp39-cp39-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pynormaliz-2.24-cp39-cp39-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 7ed34d82ad60b8cc84ba6fc05522a15e3243480f4e8d25b0a4233a9666d5a78a
MD5 8386c6321826f191f0449c5c6188b298
BLAKE2b-256 656f10e7dd11d78754cf23ea19f24a4a2863c58ecc11d40d4efda3c6ffda3c48

See more details on using hashes here.

File details

Details for the file pynormaliz-2.24-cp39-cp39-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pynormaliz-2.24-cp39-cp39-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 491f461187adba33e9059d20fdf8b4f860652b983acfa3a003ee697ec32163ce
MD5 3ea2931ed0d282701fdb6b985b523d5f
BLAKE2b-256 2e74b85866298de636f84842587fcbaa8cfe2346bf9303c28e29f5eca216615b

See more details on using hashes here.

File details

Details for the file pynormaliz-2.24-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pynormaliz-2.24-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 dc8faedf4df78260059453746bf03cb92007333c209dbda6b274389c35cba1a6
MD5 9fe7186ca8a22e7cd9d7cdcf346b5462
BLAKE2b-256 59d19eca43a399b29c5d18b9fdddbb56fc2380972d7c791fc4c759b8a0b1c0a7

See more details on using hashes here.

File details

Details for the file pynormaliz-2.24-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pynormaliz-2.24-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5886068c11d7663024ee30934497e2165221baa3d18438a19226efacb80d46ef
MD5 d60559ce4858afeaf47713fb35120d68
BLAKE2b-256 917d3133beb04d6acea6ba40e45dd69473d1f7121a5fbc7604db0dc8e2a7664b

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page