Skip to main content

An interface to Normaliz

Project description

Build Status

PyNormaliz - A python interface to Normaliz

PyNormaliz provides an interface to Normaliz via libNormaliz. It offers the complete functionality of Normaliz, and can be used interactively from python. For a first example, see this introduction by Richard Sieg (Slightly outdated: for the installation follow the instructions below).

A full documentation is contained in Appendix E of the Normaliz manual.

Requirements

The source packages of the Normaliz releases contain PyNormaliz.

Installation

The PyNormaliz install script assumes that you have executed

./install_normaliz_with_eantic.sh

within the Normaliz directory. To install PyNormaliz navigate to the Normaliz directory and type

./install_pynormaliz.sh --user

Usage

The command Cone creates a cone (and a lattice), and the member functions of Cone compute its properties. For a full list of input and output properties, see the Normaliz manual.

Start by

import PyNormaliz
from PyNormaliz import *

To create a simple example, type

C = Cone(cone = [[1,0],[0,1]])

All possible Normaliz input types can be given as keyword arguments.

The member functions allow the computation of the data of our cone. For example,

C.HilbertBasis()

returns what its name says:

[[0, 1], [1, 0]]

is the matrix of the two Hilbert basis vectors. The output matrices of PyNormaliz can be used also in Normaliz input files.

One can pass options to the compute functions as in

C.HilbertSeries(HSOP = True)

Note that some Normaliz output types must be specially encoded for python. Our Hilbert Series is returned as

[[1], [1, 1], 0]

to be read as follows: [1] is the numerator polynomial, [1,1] is the vector of exponents of t that occur in the denominator, which is (1-t)(1-t) in our case, and 0 is the shift. So the Hilbert series is given by the rational function 1/(1-t)(1-t). (Also see this introduction.) But we can use

print_series(C.HilbertSeries(HSOP = True))

with the result

    (1)
---------
(1 - t)^2

One can also compute several data simultaneously and specify options ("PrimalMode" only added as an example, not because it is particularly useful here):

C.Compute("LatticePoints", "Volume", "PrimalMode")

Then

C.Volume()

with the result

1

This is the lattice length of the diagonal in the square. The euclidean length, that has been computed simultaneously, is returned by

C.EuclideanVolume()

with the expected value

'1.4142'

Floating point numbers are formatted with 4 decimal places and returned as strings (may change). If you want the euclideal volume at the maximum floating point precision, you can use the low level interface which is intermediate between the class Cone and libnormaliz:

NmzResult(C.cone,"EuclideanVolume")
1.4142135623730951

One can find out whether a single goal has been computed by asking

C.IsComputed("Automorphisms")
False

If you use Compute instead of IsComputed, then Normaliz tries to compute the goal, and there are situations in which the computation is undesirable.

Algebraic polyhedra can be computed by PyNormaliz as well:

nf = [ "a2-2", "a", "1.4+/-0.1" ]
D = Cone( number_field = nf, cone = [["1/7a+3/2", "-5a"],["4/83a-1","97/81"]])

It is important to note that fractions and algebraic numbers must be encoded as strings for the input.

S = D.SupportHyperplanes()
S
[['-1470/433*a+280/433', '-1'], ['-32204/555417*a-668233/555417', '-1']]

Very hard to read! Somewhat better:

print_matrix(S)

          -1470/433*a+280/433 -1
-32204/555417*a-668233/555417 -1

But we can also get floating point approximations:

print_matrix(D.SuppHypsFloat())

-4.1545 -1.0000
-1.2851 -1.0000

By using Python functions, the functionality of Normaliz can be extended. For example,

def intersection(cone1, cone2):
    intersection_ineq = cone1.SupportHyperplanes()+cone2.SupportHyperplanes()
    intersection_equat = cone1.Equations()+cone2.Equations()
    C = Cone(inequalities = intersection_ineq, equations = intersection_equat)
    return C

computes the intersection of two cones. So

C1 = Cone(cone=[[1,2],[2,1]])
C2 = Cone(cone=[[1,1],[1,3]])
intersection(C1,C2).ExtremeRays()

yeilds the result

[[1, 1], [1, 2]]

If you want to see what Normaliz is doing (especually in longer computations) activate the terminal output by

C.setVerbose(True)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pynormaliz-2.21.tar.gz (321.7 kB view details)

Uploaded Source

Built Distributions

pynormaliz-2.21-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (72.0 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

pynormaliz-2.21-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (68.2 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ i686

pynormaliz-2.21-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (71.4 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARM64

pynormaliz-2.21-cp312-cp312-macosx_11_0_arm64.whl (8.8 MB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

pynormaliz-2.21-cp312-cp312-macosx_10_9_x86_64.whl (10.3 MB view details)

Uploaded CPython 3.12macOS 10.9+ x86-64

pynormaliz-2.21-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (72.0 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

pynormaliz-2.21-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (68.2 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ i686

pynormaliz-2.21-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (71.4 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

pynormaliz-2.21-cp311-cp311-macosx_11_0_arm64.whl (8.8 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

pynormaliz-2.21-cp311-cp311-macosx_10_9_x86_64.whl (10.3 MB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

pynormaliz-2.21-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (72.0 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

pynormaliz-2.21-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (68.2 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ i686

pynormaliz-2.21-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (71.4 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

pynormaliz-2.21-cp310-cp310-macosx_11_0_arm64.whl (8.8 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

pynormaliz-2.21-cp310-cp310-macosx_10_9_x86_64.whl (10.3 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

pynormaliz-2.21-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (72.0 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

pynormaliz-2.21-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (68.2 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ i686

pynormaliz-2.21-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (71.4 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

pynormaliz-2.21-cp39-cp39-macosx_11_0_arm64.whl (8.8 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

pynormaliz-2.21-cp39-cp39-macosx_10_9_x86_64.whl (10.3 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

PyNormaliz-2.21-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (71.2 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

PyNormaliz-2.21-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (67.5 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ i686

PyNormaliz-2.21-cp312-cp312-macosx_11_0_arm64.whl (8.7 MB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

PyNormaliz-2.21-cp312-cp312-macosx_10_9_x86_64.whl (10.3 MB view details)

Uploaded CPython 3.12macOS 10.9+ x86-64

PyNormaliz-2.21-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (71.2 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

PyNormaliz-2.21-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (67.5 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ i686

PyNormaliz-2.21-cp311-cp311-macosx_11_0_arm64.whl (8.7 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

PyNormaliz-2.21-cp311-cp311-macosx_10_9_x86_64.whl (10.3 MB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

PyNormaliz-2.21-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (71.2 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

PyNormaliz-2.21-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (67.5 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ i686

PyNormaliz-2.21-cp310-cp310-macosx_11_0_arm64.whl (8.7 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

PyNormaliz-2.21-cp310-cp310-macosx_10_9_x86_64.whl (10.3 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

PyNormaliz-2.21-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (71.2 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

PyNormaliz-2.21-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (67.5 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ i686

PyNormaliz-2.21-cp39-cp39-macosx_11_0_arm64.whl (8.7 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

PyNormaliz-2.21-cp39-cp39-macosx_10_9_x86_64.whl (10.3 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

File details

Details for the file pynormaliz-2.21.tar.gz.

File metadata

  • Download URL: pynormaliz-2.21.tar.gz
  • Upload date:
  • Size: 321.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for pynormaliz-2.21.tar.gz
Algorithm Hash digest
SHA256 6ef392d0f04e8f41d8eb593c2a8ff1434ea6ae5b379633d44d4bc47068ed5e43
MD5 a510feeb458876f457ffdd23548ec35f
BLAKE2b-256 2918eac622d4180611edfa59a32a74ba737686fbd87de398fc38b67cf30e9b85

See more details on using hashes here.

File details

Details for the file pynormaliz-2.21-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pynormaliz-2.21-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 65e41d4cdece04ce9fd981391d4144979164149435bd4b2341849dad5091f511
MD5 86ece295f82aa533dd0b5403080a3bf9
BLAKE2b-256 44da4fde2470c60b829c67b252dd79b7a974ddb7ec00e80c4966a30ab260df2d

See more details on using hashes here.

File details

Details for the file pynormaliz-2.21-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pynormaliz-2.21-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 858867f1a0b578fbee96ca4e10ed72efa5822af54d41d4a086d742f5bae469b7
MD5 8e8ab28d448064ba38134137abe66ab6
BLAKE2b-256 956cb764fb794a5f6ff234993899d80e869e4fa59a5d8a6e05bc6cde0d809ee7

See more details on using hashes here.

File details

Details for the file pynormaliz-2.21-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pynormaliz-2.21-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 866e6497cf9c95016668a29f955e5e8e33bbde27ed45b53ad3de7affa22a05e8
MD5 77d41ae3e87ad0501bc420999cf65a43
BLAKE2b-256 65ae2bf97ab54cd08c4dd61c0af59fa79c136d176363670fa2fdf058d7340f8f

See more details on using hashes here.

File details

Details for the file pynormaliz-2.21-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pynormaliz-2.21-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5dca30e7943a706464763d114668b5c95e5814d5a38f9a01a3f7258581b7a6ea
MD5 192d0d7083d037dc21396bc5f9bfeff7
BLAKE2b-256 bd2d8570172a3888248bbbbe1d8550b67eb1a60f5d8ff123ba5323b07e7099e0

See more details on using hashes here.

File details

Details for the file pynormaliz-2.21-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pynormaliz-2.21-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a8881bc6728587212ce7079a722003073bc1bfda58b97901d01fa817a94d6553
MD5 1cd82511a7a140bfda5b4315f0ad80c5
BLAKE2b-256 cc690b574272ed9264b55424a9c9678465a68360a7fa4d9107e7ea1e63a5548c

See more details on using hashes here.

File details

Details for the file pynormaliz-2.21-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pynormaliz-2.21-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cb51d674f245b41f660625dff15e2b008d033897eefb7779f823c5bba7a83948
MD5 683d2cf08c6a993ad6e863722eab9f48
BLAKE2b-256 b745ec45353be6bc21a52dbfa00cff4ccf04c440d3e1fffadb499e7c3037c7ac

See more details on using hashes here.

File details

Details for the file pynormaliz-2.21-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pynormaliz-2.21-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ec71da558c61d0f04b31410ef2aea92925088100d1c7793b00cb764a334f37bc
MD5 ada55c48864d4de2484ee56f70edf9f2
BLAKE2b-256 4095a00188bea536589707d5503c2e011f263c028a4327e44880d308874d9311

See more details on using hashes here.

File details

Details for the file pynormaliz-2.21-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pynormaliz-2.21-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 58c7aa3516d6724b14b11cea3bfd92d41b58d377472982c5a46690f1e29c93ec
MD5 318042b76e6d3d8d5e4d20538f9d3d62
BLAKE2b-256 b4117e0b4ee7077c1d4bf57ee93fd3cfbde68f706aefff0aaaa04f59adedd97f

See more details on using hashes here.

File details

Details for the file pynormaliz-2.21-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pynormaliz-2.21-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b19f79217663bd5d0199019abd640cb2d3e81d55f220a69ace88912b590900fa
MD5 f0ecf6a33d015ed1febb537950be54a2
BLAKE2b-256 ec35d118ab92c6bcbddaa57c1e1e41137313c154f7d7a4e84d4c8de3c08875d6

See more details on using hashes here.

File details

Details for the file pynormaliz-2.21-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pynormaliz-2.21-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6172f09d72375993f98404b81cd14ce61fbe207528c6cad94c42bee7e39ed733
MD5 13c3a8f9a088878b385a7bc232cf677b
BLAKE2b-256 022aef02112d9cf779d32951889a49d1868efce372f7ad43426c1640ce695a10

See more details on using hashes here.

File details

Details for the file pynormaliz-2.21-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pynormaliz-2.21-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e49e662737deddeeae9aa9083ea750a8ea55165e86815a925151691411104495
MD5 8e57205bb49d6e45ea8f689b6ae88469
BLAKE2b-256 b4c3cb62b8aac3c4fbc6cabb7cce449e055880cc0ac3c0c6f99e43eb7ed4dd09

See more details on using hashes here.

File details

Details for the file pynormaliz-2.21-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pynormaliz-2.21-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 17198dceee598b930bb1265c53e51ec569b01a4eb7d7c28c1bcf64ceb89e1027
MD5 019f885d39b1c5170d7916233b936042
BLAKE2b-256 747ba02035df15b21f477995799fa9d75e172d0a65cfbdd6223c578e61cf231a

See more details on using hashes here.

File details

Details for the file pynormaliz-2.21-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pynormaliz-2.21-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 110923fb06d9ee4635b856cf55182adb6ec875d229d363127841197e420e632a
MD5 f899c3a2ee3b3c31bc5b64b71f179abb
BLAKE2b-256 17957d115408e86417e97cc342ffbd4afadf6883bc3042703dda825062bf5635

See more details on using hashes here.

File details

Details for the file pynormaliz-2.21-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pynormaliz-2.21-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 00fb3949fba7ad90d26ca5d9e681773dd90de036169a4fb2e8a8599b53bd39af
MD5 58c5ca9436ddb95cdb9a31a5d5191b88
BLAKE2b-256 fa1c9f70b30659f78c51f5803a7f9fae366b7b32d27aad8f7173440f183c084d

See more details on using hashes here.

File details

Details for the file pynormaliz-2.21-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pynormaliz-2.21-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 554e3077cc47858c4c9ed9799a63d5502a1b08ff10e45b427c919e48ab6978b6
MD5 2be759e9ec6bfd01acd1a9f8d1bc1b17
BLAKE2b-256 91b25d235024ce7e2cfd119f2cc7fe241d7353b3c5513754afa154639298c1b7

See more details on using hashes here.

File details

Details for the file pynormaliz-2.21-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pynormaliz-2.21-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a3ed9c1409c11576003e4dbc604e5421dd52cf46c61deabfabec53952001d983
MD5 b29a4cca13a4ac58931f16e5935423d9
BLAKE2b-256 5f6a35abec8bff1223023e0593254b2011175ca0294b37d2e42e27a8bf5698ba

See more details on using hashes here.

File details

Details for the file pynormaliz-2.21-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pynormaliz-2.21-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 cedd33ec2560b8d6067bffbf376dbf28bb48386f3b1d3f4872f2452cb4059cdc
MD5 0500ed0975f47adf3b6ca822b087632b
BLAKE2b-256 6a150e5a15d861af2fe64d9909fccb2bd8e949eb493bfc285fa8c71d07331265

See more details on using hashes here.

File details

Details for the file pynormaliz-2.21-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pynormaliz-2.21-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 637949f226fa8cf7870763e82dcd2167d661ad4505c0707625cdef23d63d7fbe
MD5 2cd9108420fb4107d78b177ca1ebaac4
BLAKE2b-256 5ee681bb2934c4f5e2859a4c127df644b0f97abe51e8afafcd93a85858d3a779

See more details on using hashes here.

File details

Details for the file pynormaliz-2.21-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pynormaliz-2.21-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a5fe2702491051624f04668aa0f45d90ac238e4a5a741f2adb70c69c3a07d6af
MD5 ad088c66365a59d0396781127e7fb025
BLAKE2b-256 095046b18599ac2e1cf521e420122e78c0e89d27dd9b77c59a1811a94e177953

See more details on using hashes here.

File details

Details for the file pynormaliz-2.21-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pynormaliz-2.21-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a4127b2c749dbb472f3c307c210a26645dfbd6bbb32b3996cc940a813dc32b23
MD5 4838fff71341a54d1b21bc18869c4a82
BLAKE2b-256 008e61a92ee642b7deead0880400f19b14ab24ea0405f1f8e0dd61ebb089d58f

See more details on using hashes here.

File details

Details for the file PyNormaliz-2.21-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyNormaliz-2.21-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 804f94ade661f2409e6bcd619c2baf1e5a2a4c1fbd83c45868f77f8add1be567
MD5 a598fbb018ac5b28643f5c1dce58e697
BLAKE2b-256 099fd92ab18e19ddf18ce635dcb292fb22de6566dfeea0d7744e51d74cd81312

See more details on using hashes here.

File details

Details for the file PyNormaliz-2.21-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyNormaliz-2.21-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7be9025e1435b6e14099ce2d14c785c39047498c0f9d263567dca080b689eb37
MD5 fa685912dd950ee0a4dbe02283f22346
BLAKE2b-256 d9afd38ea9713f3334b5fb256d1f04742783f3d76d09553c630d1937ce6ecbb2

See more details on using hashes here.

File details

Details for the file PyNormaliz-2.21-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for PyNormaliz-2.21-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4726e1c08370080f2d73bd810f88f0b8c9c28706a1e9ffee42e4790aacc3f361
MD5 143e1ab8a3214926b98700eb259ae9ac
BLAKE2b-256 d7f2616465437d7a936b326ea2ce0e7b810767f54c68007b868f44e7b36d8528

See more details on using hashes here.

File details

Details for the file PyNormaliz-2.21-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyNormaliz-2.21-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 26001f357f69a68ee451d33b391141f164d7b4d3c3ce862cf4764b95c5d2c8ff
MD5 b27023306f0fc51d0326f7b30787f7f4
BLAKE2b-256 845491e4f31651e960511688260be78c75d12ad2b9a6e9e5ed20deefc15725fc

See more details on using hashes here.

File details

Details for the file PyNormaliz-2.21-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyNormaliz-2.21-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8eecf43307f4cf7e081ad728b23d9b01a78cfc8c9b0919e05df36167d6542d3c
MD5 24ad3382cbbf30f6f918a8ccd6350454
BLAKE2b-256 00ce0870609808ebd8faf4863c0e3f6db87173da9cb869aba529f0e4c090b2f8

See more details on using hashes here.

File details

Details for the file PyNormaliz-2.21-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyNormaliz-2.21-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a0d012515a20072e99d6cf29ce505108d18d10f379e3af3861a37953cd695f48
MD5 2e74f4f660211bdfda6a286ddcbeec8a
BLAKE2b-256 a0be3d35e2d3a148ef784b3911473f887ffe270ef941f52c1cb1ccb389f11458

See more details on using hashes here.

File details

Details for the file PyNormaliz-2.21-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for PyNormaliz-2.21-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9124a0d2f723cbccb0377e24b97fa2330184159078eaf0a35260cd8427891d5e
MD5 7c8fdb640aa60cd5f7c0d0082668f78e
BLAKE2b-256 b2f92438702aad7a2dbdf16b299e9397ac6b71164a268d51130538de7e810e51

See more details on using hashes here.

File details

Details for the file PyNormaliz-2.21-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyNormaliz-2.21-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2f7b26748a385c4d044b61652ee017c4ffdfa962c56faca04a027eb263c6138b
MD5 05cccb0759b7a46e739c15a48c49ba4a
BLAKE2b-256 586db74f3558ea19695646b67c849aedcffc714bbfb26879c760d76a696482f3

See more details on using hashes here.

File details

Details for the file PyNormaliz-2.21-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyNormaliz-2.21-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 565c1c0c65b78661df726bb33415d7c70fd12f7e5785d0cee3391b6ee13e1149
MD5 9dfec1e9203b7cc863bca29311a5dd5b
BLAKE2b-256 c5d70b1345ee81ac924384b9f150d345a7eb067b7d8fd2d6d9c255ae33daadaa

See more details on using hashes here.

File details

Details for the file PyNormaliz-2.21-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyNormaliz-2.21-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9e92460798fa0e93a3217f9bd26398bb772b763b18034803f2d30264c59a90d8
MD5 a8be4f9506c7b5aeed11a15f2ef2efa0
BLAKE2b-256 fa06179216d07e7f54e0e6de1c134d853a532d760c59bebf8ab92265872fdf7a

See more details on using hashes here.

File details

Details for the file PyNormaliz-2.21-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for PyNormaliz-2.21-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d572e279777b5d1141bb3f26adfa9739c5366d419e187aa2fa944ecc5fa7135b
MD5 46d1947b7e04ee63d479ca3d93e668cd
BLAKE2b-256 0d7eed9d72304132ed86a3ad9a097cd4b28afc7f5d7ddbef1b40a149a155eb74

See more details on using hashes here.

File details

Details for the file PyNormaliz-2.21-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyNormaliz-2.21-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c34df36c2a8de225eb78bd488ec957e60d4ade6f98b2c5dcb78285a20a5d39a4
MD5 30fa0f512a8ae26d43c1843dbad9a371
BLAKE2b-256 982773610a0202ebc664bed1e5ea967027c9a928c78544637bdd424754274277

See more details on using hashes here.

File details

Details for the file PyNormaliz-2.21-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyNormaliz-2.21-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1ff4c300ba2922763146029570ebef50cb54137bd5ad0325d64cdea043d0dcd6
MD5 c9d22726bd61c3405a302dab4a02b81b
BLAKE2b-256 426d80205af484013003638c269c1187b0b2f79755e01741409aabe842107518

See more details on using hashes here.

File details

Details for the file PyNormaliz-2.21-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyNormaliz-2.21-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 82f95e9a00e0e6b116ab49deb8369be2e71d7219284de42031c5db0b7f987572
MD5 feff6173776eb50a3e0ffe62ed8a8a1d
BLAKE2b-256 512c13746d680b701ad9ad5a238381568436b72361b1e502ce7342d7dcfb3ca8

See more details on using hashes here.

File details

Details for the file PyNormaliz-2.21-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for PyNormaliz-2.21-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 31289a73fcd89f1df59721239f9a1961ddca4785f79608b7fd3eaf35352ae16b
MD5 7b40a2f5ff81bb90f256bdabf6b366cf
BLAKE2b-256 276a572f4048841952ef52c825b21776b284427d38049b6a8c6b86243045ccea

See more details on using hashes here.

File details

Details for the file PyNormaliz-2.21-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyNormaliz-2.21-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4ae6802e2611b1fbbeb47192bd69c81d4fd583799d56c225cfa2663619c2d768
MD5 dd68d669b380f1c2a6e26d5aae4ca9b3
BLAKE2b-256 bb13682af2099241780911a648002e1a7c2a75af9e11b7aa8c00f28f0410a541

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page