Skip to main content

Python interface and modeling environment for SCIP

Project description

PySCIPOpt

This project provides an interface from Python to the SCIP Optimization Suite. Starting from v8.0.3, SCIP uses the Apache2.0 license. If you plan to use an earlier version of SCIP, please review SCIP's license restrictions.

Gitter PySCIPOpt on PyPI Integration test coverage AppVeyor Status

Documentation

Please consult the online documentation or use the help() function directly in Python or ? in IPython/Jupyter.

The old documentation, which we are in the process of migrating from, is still more complete w.r.t. the API, and can be found here

See CHANGELOG.md for added, removed or fixed functionality.

Installation

The recommended installation method is via PyPI:

pip install pyscipopt

To avoid interfering with system packages, it's best to use a virtual environment:

python3 -m venv venv     # creates a virtual environment called venv
source venv/bin/activate # activates the environment. On Windows use: venv\Scripts\activate
pip install pyscipopt

Remember to activate the environment (source venv/bin/activate or equivalent) in each terminal session where you use PySCIPOpt. Note that some configurations require the use of virtual environments.

For information on specific versions, installation via Conda, and guides for building from source, please see the online documentation.

Building and solving a model

There are several examples and tutorials. These display some functionality of the interface and can serve as an entry point for writing more complex code. Some of the common usecases are also available in the recipes sub-package. You might also want to have a look at this article about PySCIPOpt: https://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/6045. The following steps are always required when using the interface:

  1. It is necessary to import python-scip in your code. This is achieved by including the line
from pyscipopt import Model
  1. Create a solver instance.
model = Model("Example")  # model name is optional
  1. Access the methods in the scip.pxi file using the solver/model instance model, e.g.:
x = model.addVar("x")
y = model.addVar("y", vtype="INTEGER")
model.setObjective(x + y)
model.addCons(2*x - y*y >= 0)
model.optimize()
sol = model.getBestSol()
print("x: {}".format(sol[x]))
print("y: {}".format(sol[y]))

Writing new plugins

The Python interface can be used to define custom plugins to extend the functionality of SCIP. You may write a pricer, heuristic or even constraint handler using pure Python code and SCIP can call their methods using the callback system. Every available plugin has a base class that you need to extend, overwriting the predefined but empty callbacks. Please see test_pricer.py and test_heur.py for two simple examples.

Please notice that in most cases one needs to use a dictionary to specify the return values needed by SCIP.

Using PySCIPOpt?

If your project or company is using PySCIPOpt, consider letting us know at scip@zib.de. We are always interested in knowing how PySCIPOpt is being used, and, given permission, would also appreciate adding your company's logo to our website.

If you are creating models with some degree of complexity which don't take too long to solve, also consider sharing them with us. We might want to add them to tests/helpers/utils.py to help make our tests more robust, or add them to our examples.

Citing PySCIPOpt

Please cite this paper

@incollection{MaherMiltenbergerPedrosoRehfeldtSchwarzSerrano2016,
  author = {Stephen Maher and Matthias Miltenberger and Jo{\~{a}}o Pedro Pedroso and Daniel Rehfeldt and Robert Schwarz and Felipe Serrano},
  title = {{PySCIPOpt}: Mathematical Programming in Python with the {SCIP} Optimization Suite},
  booktitle = {Mathematical Software {\textendash} {ICMS} 2016},
  publisher = {Springer International Publishing},
  pages = {301--307},
  year = {2016},
  doi = {10.1007/978-3-319-42432-3_37},
}

as well as the corresponding SCIP Optimization Suite report when you use this tool for a publication or other scientific work.

Seeking Maintainers

PySCIPOpt is sustained by volunteer effort, and as the project grows we are inviting more contributors and maintainers to join the team.

What needs to be done

These are the core responsibilities:

  • Community support: Going over the open issues regularly. Occasionally visiting Stack Overflow and OR.SE, as users also ask questions there.
  • PR review: Reviewing user pull requests, making sure that the CHANGELOG is updated, and all added methods are tested.
  • API coverage: keep expanding PySCIPOpt's coverage of SCIP's C API.
  • Documentation: help keep the documentation up to date, and add new tutorials/examples.
  • Releases: there should be a PySCIPOpt release with every SCIP release, at a minimum.

Even if you are not interested in becoming a maintainer, but would like to help out occasionally, that would be very welcome as well!

Send us an email over at joao.goncalves.dionisio@gmail.com if you're ready to take on the challenge :)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyscipopt-6.1.0.tar.gz (1.6 MB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

pyscipopt-6.1.0-cp314-cp314t-win_amd64.whl (49.5 MB view details)

Uploaded CPython 3.14tWindows x86-64

pyscipopt-6.1.0-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (17.6 MB view details)

Uploaded CPython 3.14tmanylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

pyscipopt-6.1.0-cp314-cp314t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (16.7 MB view details)

Uploaded CPython 3.14tmanylinux: glibc 2.27+ ARM64manylinux: glibc 2.28+ ARM64

pyscipopt-6.1.0-cp314-cp314t-macosx_14_0_x86_64.whl (12.3 MB view details)

Uploaded CPython 3.14tmacOS 14.0+ x86-64

pyscipopt-6.1.0-cp314-cp314t-macosx_14_0_arm64.whl (8.5 MB view details)

Uploaded CPython 3.14tmacOS 14.0+ ARM64

pyscipopt-6.1.0-cp314-cp314-win_amd64.whl (49.4 MB view details)

Uploaded CPython 3.14Windows x86-64

pyscipopt-6.1.0-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (17.4 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

pyscipopt-6.1.0-cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (16.2 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.27+ ARM64manylinux: glibc 2.28+ ARM64

pyscipopt-6.1.0-cp314-cp314-macosx_14_0_x86_64.whl (12.2 MB view details)

Uploaded CPython 3.14macOS 14.0+ x86-64

pyscipopt-6.1.0-cp314-cp314-macosx_14_0_arm64.whl (8.4 MB view details)

Uploaded CPython 3.14macOS 14.0+ ARM64

pyscipopt-6.1.0-cp313-cp313-win_amd64.whl (48.2 MB view details)

Uploaded CPython 3.13Windows x86-64

pyscipopt-6.1.0-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (17.6 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

pyscipopt-6.1.0-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (16.2 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.27+ ARM64manylinux: glibc 2.28+ ARM64

pyscipopt-6.1.0-cp313-cp313-macosx_14_0_x86_64.whl (12.2 MB view details)

Uploaded CPython 3.13macOS 14.0+ x86-64

pyscipopt-6.1.0-cp313-cp313-macosx_14_0_arm64.whl (8.4 MB view details)

Uploaded CPython 3.13macOS 14.0+ ARM64

pyscipopt-6.1.0-cp312-cp312-win_amd64.whl (48.2 MB view details)

Uploaded CPython 3.12Windows x86-64

pyscipopt-6.1.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (17.6 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

pyscipopt-6.1.0-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (16.2 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.27+ ARM64manylinux: glibc 2.28+ ARM64

pyscipopt-6.1.0-cp312-cp312-macosx_14_0_x86_64.whl (12.2 MB view details)

Uploaded CPython 3.12macOS 14.0+ x86-64

pyscipopt-6.1.0-cp312-cp312-macosx_14_0_arm64.whl (8.4 MB view details)

Uploaded CPython 3.12macOS 14.0+ ARM64

pyscipopt-6.1.0-cp311-cp311-win_amd64.whl (48.3 MB view details)

Uploaded CPython 3.11Windows x86-64

pyscipopt-6.1.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (17.7 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

pyscipopt-6.1.0-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (16.4 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.27+ ARM64manylinux: glibc 2.28+ ARM64

pyscipopt-6.1.0-cp311-cp311-macosx_14_0_x86_64.whl (12.3 MB view details)

Uploaded CPython 3.11macOS 14.0+ x86-64

pyscipopt-6.1.0-cp311-cp311-macosx_14_0_arm64.whl (8.4 MB view details)

Uploaded CPython 3.11macOS 14.0+ ARM64

pyscipopt-6.1.0-cp310-cp310-win_amd64.whl (48.3 MB view details)

Uploaded CPython 3.10Windows x86-64

pyscipopt-6.1.0-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (17.2 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

pyscipopt-6.1.0-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.27+ ARM64manylinux: glibc 2.28+ ARM64

pyscipopt-6.1.0-cp310-cp310-macosx_14_0_x86_64.whl (12.3 MB view details)

Uploaded CPython 3.10macOS 14.0+ x86-64

pyscipopt-6.1.0-cp310-cp310-macosx_14_0_arm64.whl (8.4 MB view details)

Uploaded CPython 3.10macOS 14.0+ ARM64

pyscipopt-6.1.0-cp39-cp39-win_amd64.whl (48.3 MB view details)

Uploaded CPython 3.9Windows x86-64

pyscipopt-6.1.0-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (17.1 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

pyscipopt-6.1.0-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (15.8 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.27+ ARM64manylinux: glibc 2.28+ ARM64

pyscipopt-6.1.0-cp39-cp39-macosx_14_0_x86_64.whl (12.3 MB view details)

Uploaded CPython 3.9macOS 14.0+ x86-64

pyscipopt-6.1.0-cp39-cp39-macosx_14_0_arm64.whl (8.4 MB view details)

Uploaded CPython 3.9macOS 14.0+ ARM64

pyscipopt-6.1.0-cp38-cp38-win_amd64.whl (48.3 MB view details)

Uploaded CPython 3.8Windows x86-64

pyscipopt-6.1.0-cp38-cp38-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (17.4 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

pyscipopt-6.1.0-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (16.0 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.27+ ARM64manylinux: glibc 2.28+ ARM64

pyscipopt-6.1.0-cp38-cp38-macosx_14_0_x86_64.whl (12.3 MB view details)

Uploaded CPython 3.8macOS 14.0+ x86-64

pyscipopt-6.1.0-cp38-cp38-macosx_14_0_arm64.whl (8.5 MB view details)

Uploaded CPython 3.8macOS 14.0+ ARM64

File details

Details for the file pyscipopt-6.1.0.tar.gz.

File metadata

  • Download URL: pyscipopt-6.1.0.tar.gz
  • Upload date:
  • Size: 1.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pyscipopt-6.1.0.tar.gz
Algorithm Hash digest
SHA256 7a6b144fd3a7485a85ffa2e6eea71d8251f2ca8bbc84cb2b36d6bb08d1c17e17
MD5 7c359358563d596bd771d6bb8fd12239
BLAKE2b-256 363c158d647974810307ec4bec143cfe6b8044d338a42d326b31ac0b4ca181b8

See more details on using hashes here.

File details

Details for the file pyscipopt-6.1.0-cp314-cp314t-win_amd64.whl.

File metadata

  • Download URL: pyscipopt-6.1.0-cp314-cp314t-win_amd64.whl
  • Upload date:
  • Size: 49.5 MB
  • Tags: CPython 3.14t, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pyscipopt-6.1.0-cp314-cp314t-win_amd64.whl
Algorithm Hash digest
SHA256 9ff7ad9c7bb00b524a3668d15ab7525a25fdcf86dd4d81c076c4cb2294cb796c
MD5 407f65be65082cf287d3ef4e3b2c275d
BLAKE2b-256 0dadbba7052f1e885f13f17403795568f1db28d4cb2d89106715ed3dacd1e69c

See more details on using hashes here.

File details

Details for the file pyscipopt-6.1.0-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pyscipopt-6.1.0-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 df0beb73c574d0909ddb9ba3a0c3f8cb696f87454d24d918039298e448914972
MD5 b46a7f88d3a877e9294da1d9d226aa16
BLAKE2b-256 25c948b550d915e1c0d6d214bd1869955db90363612b777812823e3c907d93c2

See more details on using hashes here.

File details

Details for the file pyscipopt-6.1.0-cp314-cp314t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pyscipopt-6.1.0-cp314-cp314t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 69bdba9046f856645dc23f5213c7654c09e62a008c1788db760cd496d5e5b453
MD5 a177622fca04e789092131994d0f675d
BLAKE2b-256 58a05c395b1216172fb190a8bc45f8706d78405603eef162f2e56681cc4929ae

See more details on using hashes here.

File details

Details for the file pyscipopt-6.1.0-cp314-cp314t-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for pyscipopt-6.1.0-cp314-cp314t-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 f79b6db86b72c548676b4567826d6587495fd797fbe856ffb987cbef9627c1fe
MD5 eafdc52818846eab990bb6a9fdee162c
BLAKE2b-256 f43fc6114d413d516ff9743375d002ad6e0b737926afc293c886c4ee2833ce93

See more details on using hashes here.

File details

Details for the file pyscipopt-6.1.0-cp314-cp314t-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for pyscipopt-6.1.0-cp314-cp314t-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 c422f5ad40f9323ea81ac4121d4a82793356688cbf792583a0a3ca74faf7960b
MD5 0b71cf61d616a8b42867db2bc80fb72a
BLAKE2b-256 4f791d46f977fa64372a8d64a78c0f5325523fb07f272bf1a653f8faf45397a3

See more details on using hashes here.

File details

Details for the file pyscipopt-6.1.0-cp314-cp314-win_amd64.whl.

File metadata

  • Download URL: pyscipopt-6.1.0-cp314-cp314-win_amd64.whl
  • Upload date:
  • Size: 49.4 MB
  • Tags: CPython 3.14, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pyscipopt-6.1.0-cp314-cp314-win_amd64.whl
Algorithm Hash digest
SHA256 d7e9367f574d8c741b6d521feb9dcb1fcc3b1cc4a1c75a39d7061ed0bd330c92
MD5 5233ace681c38b49f8df08dbb00bce82
BLAKE2b-256 895917e8895fd224b871cbf53c7a9d92d177075847cb57b37569b650832ff6be

See more details on using hashes here.

File details

Details for the file pyscipopt-6.1.0-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pyscipopt-6.1.0-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 23b4ded5aa9acd4fb23f7f8af6c114f06c77106369098e426c745fa0a78971f8
MD5 70df7b67b126cfe123f157a6286342c0
BLAKE2b-256 680d33bf798dab2781c11c965e233a9dd9e301eae0c076b056a1db191357620c

See more details on using hashes here.

File details

Details for the file pyscipopt-6.1.0-cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pyscipopt-6.1.0-cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 44fa2c76e9b1cdcfc0a484bbe95d94cdc13e31e7ede2c2b14c0d87f3e80e84ae
MD5 04656e2acdec975ee59f80cdcda53601
BLAKE2b-256 11acfb4bef642470d1e118312c9b1e8c057b09cc02aea7f5dc05a7af3f760bad

See more details on using hashes here.

File details

Details for the file pyscipopt-6.1.0-cp314-cp314-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for pyscipopt-6.1.0-cp314-cp314-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 a760b6a9c2e12911546fe81e84ac7fcfe281e96b79c74f46a660e9f510675d58
MD5 aaf44c054af15a7eaf62af090f8f7609
BLAKE2b-256 7a518d1b62b9ec43464642bf04cf0b80dc7b37d50ba0a78e65e67694dbde5d09

See more details on using hashes here.

File details

Details for the file pyscipopt-6.1.0-cp314-cp314-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for pyscipopt-6.1.0-cp314-cp314-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 38fa15157864a84c361a9adc787e56eb88603dae61c6b6ae0b24ae6299a7c53b
MD5 2a8003c856fbac3f214c82d221784c20
BLAKE2b-256 8ad1f0b3b7aeb232870ec186c77ba526e8e66b8adda79381aa94eb9425c1248f

See more details on using hashes here.

File details

Details for the file pyscipopt-6.1.0-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: pyscipopt-6.1.0-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 48.2 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pyscipopt-6.1.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 a620e2f1eb8f21e3665c12b73e7a940fa033c2cf63df94af3b6519e5c4947ccd
MD5 153aca3fa3b3f8db906170816f2a99f3
BLAKE2b-256 2096c19c6d8398a719b1a08199263a4cd616f417e84116bb4fbc9fe638e24928

See more details on using hashes here.

File details

Details for the file pyscipopt-6.1.0-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pyscipopt-6.1.0-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 4f4e7219f584c1e8a4584d2afb7618aece51d57d87ab961f2e2809c36d64c484
MD5 25144006069eccd3791a228f50e637ba
BLAKE2b-256 97ab3dd6240087c26cbe796264b3fd6b942088100f7b846a25c1309f497da084

See more details on using hashes here.

File details

Details for the file pyscipopt-6.1.0-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pyscipopt-6.1.0-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 c0f4ff0fed4195a7acd228b85a7e5303cc5d79e4d5ebaec352538c54c4759acc
MD5 f021f8410a92fa7602b27bc107bebfc0
BLAKE2b-256 421a3451245c5b1675bc6f54e607f872d607e587b5e8d030f675a07f1a822588

See more details on using hashes here.

File details

Details for the file pyscipopt-6.1.0-cp313-cp313-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for pyscipopt-6.1.0-cp313-cp313-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 116c5822a27ba39167b1cc962c223e58cf2f97b3bb5ca294c9cbb5d75c488574
MD5 c69e9cd0f3efa731496e61079538b7cd
BLAKE2b-256 9a6ed9029dafac712e964c0d197adbf6c2f1882ae214fd7d2fd506eae69335ee

See more details on using hashes here.

File details

Details for the file pyscipopt-6.1.0-cp313-cp313-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for pyscipopt-6.1.0-cp313-cp313-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 561a7a7113c4afafa2d0033aa091ad036dd639498be6b20cd14a79fd6c3ba51d
MD5 a51bb5937504c795264cf9c8f6e9ff3d
BLAKE2b-256 7a805dfc268e691b86e41551eb4a2a7946d110430180df26f2deba972d940a53

See more details on using hashes here.

File details

Details for the file pyscipopt-6.1.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: pyscipopt-6.1.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 48.2 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pyscipopt-6.1.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 f3c843e03fb29c70b397fab450f3e5d2eaeb389390d5d7c890f8e2914c2d5630
MD5 16b0e44d0683f201acc7219d57894b61
BLAKE2b-256 e1c97b09eaded3bac7f41d626e095dad774184690be7e5c911e0c1d3c777613e

See more details on using hashes here.

File details

Details for the file pyscipopt-6.1.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pyscipopt-6.1.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 cfce78017258a0c1927d95a036bd15ba054278959218fa5d187bbeb2d300e74c
MD5 93068748a5a0fc2c5fc8c87b10c7928e
BLAKE2b-256 d0fabff8d28aa4e6641e9c5807eeb21ffda6261f8c7d85f94fe3f571e119c2ed

See more details on using hashes here.

File details

Details for the file pyscipopt-6.1.0-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pyscipopt-6.1.0-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 cd42e124abfbfaf5cb5ec675221036fb68cb2e6c17af53c634396a10ec744d96
MD5 d4001bcfcc9706bf1175e0f16337155d
BLAKE2b-256 d8b2e2867579025a00b5d2240addc8eba9b9441e4f06d285150bb5b43bf32a85

See more details on using hashes here.

File details

Details for the file pyscipopt-6.1.0-cp312-cp312-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for pyscipopt-6.1.0-cp312-cp312-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 c3f91945469cae82c28c1c53e18a25749467a698119b6d6626f0d4a4c259a663
MD5 b6a3300ef7eb0ae4a9fd6930c12736ea
BLAKE2b-256 6696478fba6d7a9fad560846936224188230be0579306c21fc84f4eb357b2ea1

See more details on using hashes here.

File details

Details for the file pyscipopt-6.1.0-cp312-cp312-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for pyscipopt-6.1.0-cp312-cp312-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 3ee05a4aaddbc21fa0ef31a123f68ec79c0de8865f7434223dd12a710c89a722
MD5 6deb5e57e2df400e5b95b10bdef4aa22
BLAKE2b-256 f5ebdf868676358265626d85a1cac49cb3dec9ae5fb3d8d08243f045ea62520c

See more details on using hashes here.

File details

Details for the file pyscipopt-6.1.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pyscipopt-6.1.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 48.3 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pyscipopt-6.1.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 2f0182a3fda6aff13e9b763dfff003de48aae8be4f08fe11362bfda29b26af56
MD5 b6cb1d6c8839406e6f1d613947442615
BLAKE2b-256 dd375b924aa84f214b800dd4c651eb9493093b94d7d6b6e3634965ba9f247aaa

See more details on using hashes here.

File details

Details for the file pyscipopt-6.1.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pyscipopt-6.1.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 9cbd6750c5c0ac5a5cc56cd950a376235b482a11911a282dbca6373cc0ee0c7b
MD5 84ccdcf92b3d3e3916f6b7150b9bd460
BLAKE2b-256 dbb4c0310823179cccbc4e9ee51be82e2eac28944b68c5cb5b81daeeff811283

See more details on using hashes here.

File details

Details for the file pyscipopt-6.1.0-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pyscipopt-6.1.0-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 80e1dcc5de5f173653c2e80fad11f76cb78e8e1e4dcf6476a08312aacef8bcd6
MD5 7a30b1be8d94b70dbdcb195099b65ad4
BLAKE2b-256 5dc351bca71b84d7544b4cf7e6fd45bf6169d95cd790f73f4d19268b6a214a25

See more details on using hashes here.

File details

Details for the file pyscipopt-6.1.0-cp311-cp311-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for pyscipopt-6.1.0-cp311-cp311-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 e5ce1be9e8a74aee6ac8ba103a82354ae9dcf726418f050a6e4118d745385a3c
MD5 1fb63f850f8329139a0615a9fbb5b378
BLAKE2b-256 d601ab3145cd1156b32d95ac6bfc3e263497e1573dae31734ed38360b904f8c8

See more details on using hashes here.

File details

Details for the file pyscipopt-6.1.0-cp311-cp311-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for pyscipopt-6.1.0-cp311-cp311-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 fb448c6a69b004bead0ee64ab2a7a3441bd09ac58718ee5183532dc5defe90f8
MD5 af147251efbcfaf735d1711f143b93e1
BLAKE2b-256 710c36f80ad8fb039b9c82e9db34eeb4795e9eaf1f4ceefe2d2a395ec7a5cfa1

See more details on using hashes here.

File details

Details for the file pyscipopt-6.1.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pyscipopt-6.1.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 48.3 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pyscipopt-6.1.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 9ce0c8874642a188e160765ad2fa0e95b4a0daf2dd5b19ade5e2cceb70a8d81a
MD5 e9872f6ddebd0d63f10da5c34423f6ad
BLAKE2b-256 4a1c3cf128556cc29df4c5e7a21f98fcebab8ad98b09b7c6becdf79520bb848b

See more details on using hashes here.

File details

Details for the file pyscipopt-6.1.0-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pyscipopt-6.1.0-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 90d9af6f5d0b49327583b17735b424e122e0c906c8fa64873615cdd227629bed
MD5 79ec946b286997ad7cadf5a5209c2412
BLAKE2b-256 64ec8e719285623a804568b88bf701d0554ec1f1e9ee47cf4317607eb9ecc7bd

See more details on using hashes here.

File details

Details for the file pyscipopt-6.1.0-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pyscipopt-6.1.0-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 cc3d5cb240d912b2ced30b342148c1f9d7591cec48a362d4a25ad9144dba80cc
MD5 1d4a4b059df1c6e4aac892f59ff82848
BLAKE2b-256 35fe3b1d8cac1ab418e26e1e246feb0f239852cd08aa15b9c357ae6dfaad40ef

See more details on using hashes here.

File details

Details for the file pyscipopt-6.1.0-cp310-cp310-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for pyscipopt-6.1.0-cp310-cp310-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 e96f29ca89930d7ed22e940209e8fe6eb2e790e8ee2de17c88c61be3c69c2531
MD5 084eeca94f3d6fe4000cc01a8af538a1
BLAKE2b-256 f88ae9b819f330f68183bb3756206a3f0adeb34e5f80ff4fd6bcd694043363d6

See more details on using hashes here.

File details

Details for the file pyscipopt-6.1.0-cp310-cp310-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for pyscipopt-6.1.0-cp310-cp310-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 0129a3bb52318fb47bcfe3d1085fa95158c03fae799e5ca5fbf11abc90d8bcdb
MD5 ea2a55997b1125ebaada085a9d860e9e
BLAKE2b-256 10db5a0a59f1900bef43aa632f757e5255259afba3c99688fbbc669b85ded920

See more details on using hashes here.

File details

Details for the file pyscipopt-6.1.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyscipopt-6.1.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 48.3 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pyscipopt-6.1.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f08d8209adc966d8aca1b1ad82cbcd30e3a9c451cec0cf39b6ded7edb1d8dbff
MD5 083ffe98bff401859c00f7d09718455c
BLAKE2b-256 543ba2d701e007c4c48ab4857958a492dd39a21cf555157bb320dc2c60e40134

See more details on using hashes here.

File details

Details for the file pyscipopt-6.1.0-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pyscipopt-6.1.0-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 c6fad82863b2eeae10fed3a73e8a2bcc5e8aabb90a2809823d5fd836fa654770
MD5 46889aeacd2bad7d27ae50352a92d398
BLAKE2b-256 c8103a7a645a98597832eeb69e934bd3b26df6c8f924fdd9dacb284bc7d63f18

See more details on using hashes here.

File details

Details for the file pyscipopt-6.1.0-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pyscipopt-6.1.0-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 7ad1e5090a682eaf529e9fce43a4692ade24d022a0bdc0ad63f3f412e370205a
MD5 421a0a88354af6a24a06bb3c5a6a4c8d
BLAKE2b-256 683af9572fe9b8e96238871f83b26ea302994a2455fec87bfd42e3dc34db469e

See more details on using hashes here.

File details

Details for the file pyscipopt-6.1.0-cp39-cp39-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for pyscipopt-6.1.0-cp39-cp39-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 4b88600507e1316d88176d5b08d675adcf6a126e4dbb9cf749a6a3a892afb356
MD5 9bb09e34e0bf4439c7366da0acc40e29
BLAKE2b-256 121fbf66804154f8a9db8853e255ff8b9aafda2c5d5e418bc3ea7db3bcb52948

See more details on using hashes here.

File details

Details for the file pyscipopt-6.1.0-cp39-cp39-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for pyscipopt-6.1.0-cp39-cp39-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 7b640f0d1e4091e9a6d73807d76e75f7b0398aa06f69d8df2b8654ad0c59d5c3
MD5 b4015d75a38b276d7a2d668d1170f981
BLAKE2b-256 8e10b8c0f2941684b1f3252469e3d887911e1b99e3ce0aa0726fcf2be67bc9b4

See more details on using hashes here.

File details

Details for the file pyscipopt-6.1.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyscipopt-6.1.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 48.3 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pyscipopt-6.1.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 0cd16587592b203e1fbb5e98813a4d8f8936f6bc5ca9dfb3f7db6a411f271f2c
MD5 8c05b05bb5f9d204cf3b2b46a352a23e
BLAKE2b-256 7e96f682496c5b7f769f9b714c23fd0ddf9a80a0e819a237f5ccfa84e4f6a7fb

See more details on using hashes here.

File details

Details for the file pyscipopt-6.1.0-cp38-cp38-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pyscipopt-6.1.0-cp38-cp38-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 c383340c5852e0ea7749f42a18e5d097fca3c6a85ba39d03f377d45670d4a6a1
MD5 d2ee369dc24d2c6485d489aea2e6dfcd
BLAKE2b-256 d6057ffc7a830715a56c75f7e61c8c68ba505373368bfc7a59806f1b68bca780

See more details on using hashes here.

File details

Details for the file pyscipopt-6.1.0-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pyscipopt-6.1.0-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 cf657328fb14e9f2d63ae226bb1635da436448bb8daf3ae57d6557ffa078c550
MD5 58808edfa4b87948c29e63de271d2e2f
BLAKE2b-256 45d8d792e4defd832c09d319ae5d9ed65a320839096f3dd348fc196ae3391e35

See more details on using hashes here.

File details

Details for the file pyscipopt-6.1.0-cp38-cp38-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for pyscipopt-6.1.0-cp38-cp38-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 5f33530b66429a940fa2c07ea85117e7f09dee29737a8a3d4dc45c260c020ba6
MD5 d43ce19e51250867bf6926caae675c4d
BLAKE2b-256 b83a8bb0b9f0d7d7390e04558d5b62c590ced0c6d6b51f05ab3e596d6c3b5a68

See more details on using hashes here.

File details

Details for the file pyscipopt-6.1.0-cp38-cp38-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for pyscipopt-6.1.0-cp38-cp38-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 b7a7d721f6f1cb35af29cebdece24c94bfae06ca2b14b27a5125abe99d6cce8f
MD5 0d0ab907d5d640ad74236ac00e2da7ee
BLAKE2b-256 45657d03aa5f6f2de4babd434de304f98cbddb8cb4cf90fd781b54b178cd8ad4

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page