Drop-in Replacement for the Python Random Library.
Project description
Pyewacket
Pyewacket is a lightweight drop-in replacement for the Python random module. Pyewacket is based on the RNG Storm Engine, configured for speed.
While Storm is a high quality engine, Pyewacket is not appropriate for cryptography of any kind. Pyewacket is meant for games, data science, A.I. and experimental programming, not security.
Recommended Installation: $ pip install Pyewacket
While there are some optimisasions to be made, Pyewacket is functional and passing all tests for everything implemented so far.
ToDo:
- seed()
- getrandbits()
Development Log
Pyewacket v0.0.1b3
- quick_test()
- Extended Functionality
- sample()
- expovariate()
- gammavariate()
- weibullvariate()
- betavariate()
- paretovariate()
- gauss()
- normalvariate()
- lognormvariate()
- vonmisesvariate()
- triangular()
Pyewacket v0.0.1b2
- Basic Functionality
- random()
- uniform()
- randbelow()
- randint()
- randrange()
- choice()
- choices()
- shuffle()
Pyewacket v0.0.1b1
- Initial Design & Planning
Pywacket Distribution and Performance Test Suite
Output Distribution: Random.random()
Approximate Single Execution Time: Min: 31ns, Mid: 62ns, Max: 156ns
Raw Samples: 0.09583697775679978, 0.7481848462789238, 0.6871638418565119, 0.04862872396959628, 0.9386451928566252
Test Samples: 10000
Pre-processor Statistics:
Minimum: 0.00011202652975261795
Median: (0.5001110713473089, 0.5001642093623144)
Maximum: 0.9997068844763999
Mean: 0.49802520478413886
Std Deviation: 0.2896050587397882
Post-processor Distribution using lambda1 method:
0: 10.5%
1: 9.95%
2: 9.96%
3: 9.39%
4: 10.18%
5: 10.02%
6: 10.03%
7: 10.1%
8: 10.24%
9: 9.63%
Output Distribution: random()
Approximate Single Execution Time: Min: 31ns, Mid: 62ns, Max: 531ns
Raw Samples: 0.5514715832535501, 0.5482299292615557, 0.05471032790293082, 0.5251638815931967, 0.038520347592466794
Test Samples: 10000
Pre-processor Statistics:
Minimum: 1.9350539498879987e-05
Median: (0.4976510948606806, 0.4978419227896529)
Maximum: 0.9999961233786222
Mean: 0.4995828967661423
Std Deviation: 0.29142596740871246
Post-processor Distribution using lambda2 method:
0: 10.42%
1: 9.75%
2: 10.24%
3: 10.21%
4: 9.61%
5: 9.86%
6: 9.66%
7: 9.39%
8: 10.61%
9: 10.25%
Output Distribution: Random.uniform(0.0, 10.0)
Approximate Single Execution Time: Min: 218ns, Mid: 250ns, Max: 312ns
Raw Samples: 9.72138404861445, 1.539839756791942, 6.6431389560560525, 3.947938769466818, 8.070107038637088
Test Samples: 10000
Pre-processor Statistics:
Minimum: 0.00029655047924737055
Median: (4.999131041294197, 4.999236871838832)
Maximum: 9.999134476427438
Mean: 5.003018012069332
Std Deviation: 2.899660971736388
Post-processor Distribution using floor method:
0: 10.11%
1: 9.86%
2: 10.0%
3: 10.27%
4: 9.78%
5: 10.18%
6: 9.93%
7: 9.58%
8: 9.57%
9: 10.72%
Output Distribution: uniform(0.0, 10.0)
Approximate Single Execution Time: Min: 31ns, Mid: 62ns, Max: 93ns
Raw Samples: 0.3847631175775124, 4.745952326603827, 5.556725999795969, 6.087928344328328, 6.498634909988075
Test Samples: 10000
Pre-processor Statistics:
Minimum: 0.0017558423742254662
Median: (4.957270936532334, 4.960170524408329)
Maximum: 9.999471325225604
Mean: 4.98391286262782
Std Deviation: 2.9052098983546495
Post-processor Distribution using floor method:
0: 10.11%
1: 10.34%
2: 9.97%
3: 9.65%
4: 10.28%
5: 10.13%
6: 9.61%
7: 9.48%
8: 10.18%
9: 10.25%
Output Distribution: Random.triangular(0.0, 10.0, 0.0)
Approximate Single Execution Time: Min: 468ns, Mid: 500ns, Max: 1625ns
Raw Samples: 3.0148022873353924, 8.294454754359723, 1.4440898060144853, 2.15004508614141, 5.315968869548841
Test Samples: 10000
Pre-processor Statistics:
Minimum: 0.0006017885517870525
Median: (2.9559874784791207, 2.956327474563853)
Maximum: 9.879354985461907
Mean: 3.339759865490947
Std Deviation: 2.3487776919252146
Post-processor Distribution using floor method:
0: 18.82%
1: 16.73%
2: 15.02%
3: 13.29%
4: 11.39%
5: 9.1%
6: 6.65%
7: 4.91%
8: 3.0%
9: 1.09%
Output Distribution: triangular(0.0, 10.0, 0.0)
Approximate Single Execution Time: Min: 31ns, Mid: 62ns, Max: 93ns
Raw Samples: 1.5832287605426298, 7.060749903449856, 3.482319374321574, 1.0013297714344327, 5.341493512516113
Test Samples: 10000
Pre-processor Statistics:
Minimum: 0.00023267585398389912
Median: (2.9568876700222435, 2.9582530617690517)
Maximum: 9.960931721556184
Mean: 3.3540947993802996
Std Deviation: 2.352511126156136
Post-processor Distribution using floor method:
0: 18.54%
1: 16.89%
2: 15.05%
3: 13.51%
4: 10.71%
5: 8.98%
6: 7.15%
7: 5.29%
8: 2.78%
9: 1.1%
Output Distribution: Random.randint(1, 10)
Approximate Single Execution Time: Min: 1250ns, Mid: 1375ns, Max: 1875ns
Raw Samples: 4, 10, 5, 6, 8
Test Samples: 10000
Sample Statistics:
Minimum: 1
Median: 5
Maximum: 10
Mean: 5.4499
Std Deviation: 2.8855021404012553
Sample Distribution:
1: 10.19%
2: 10.51%
3: 10.36%
4: 9.84%
5: 10.1%
6: 9.55%
7: 9.9%
8: 9.65%
9: 9.96%
10: 9.94%
Output Distribution: randint(1, 10)
Approximate Single Execution Time: Min: 62ns, Mid: 93ns, Max: 875ns
Raw Samples: 3, 8, 4, 10, 8
Test Samples: 10000
Sample Statistics:
Minimum: 1
Median: 5
Maximum: 10
Mean: 5.4943
Std Deviation: 2.865866156833373
Sample Distribution:
1: 9.73%
2: 9.94%
3: 10.15%
4: 10.87%
5: 9.86%
6: 9.6%
7: 9.73%
8: 10.21%
9: 9.9%
10: 10.01%
Output Distribution: Random.choice([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
Approximate Single Execution Time: Min: 1125ns, Mid: 1562ns, Max: 2937ns
Raw Samples: 8, 3, 4, 7, 9
Test Samples: 10000
Sample Statistics:
Minimum: 0
Median: 4
Maximum: 9
Mean: 4.4881
Std Deviation: 2.8884412230942016
Sample Distribution:
0: 10.1%
1: 10.09%
2: 10.4%
3: 9.68%
4: 10.32%
5: 9.56%
6: 9.84%
7: 9.58%
8: 10.17%
9: 10.26%
Output Distribution: choice([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
Approximate Single Execution Time: Min: 62ns, Mid: 62ns, Max: 375ns
Raw Samples: 9, 0, 4, 3, 1
Test Samples: 10000
Sample Statistics:
Minimum: 0
Median: 4
Maximum: 9
Mean: 4.4647
Std Deviation: 2.871023891892713
Sample Distribution:
0: 10.19%
1: 10.21%
2: 10.0%
3: 9.77%
4: 10.52%
5: 9.72%
6: 10.35%
7: 9.94%
8: 9.11%
9: 10.19%
Output Distribution: Random.randrange(10)
Approximate Single Execution Time: Min: 812ns, Mid: 875ns, Max: 1062ns
Raw Samples: 3, 9, 6, 0, 8
Test Samples: 10000
Sample Statistics:
Minimum: 0
Median: 4
Maximum: 9
Mean: 4.4773
Std Deviation: 2.873797240770146
Sample Distribution:
0: 10.35%
1: 9.85%
2: 10.05%
3: 10.09%
4: 9.73%
5: 10.33%
6: 9.82%
7: 9.96%
8: 10.08%
9: 9.74%
Output Distribution: randrange(10)
Approximate Single Execution Time: Min: 62ns, Mid: 93ns, Max: 375ns
Raw Samples: 4, 2, 2, 5, 4
Test Samples: 10000
Sample Statistics:
Minimum: 0
Median: 5
Maximum: 9
Mean: 4.4979
Std Deviation: 2.8800390713504656
Sample Distribution:
0: 10.13%
1: 10.04%
2: 9.9%
3: 10.26%
4: 9.65%
5: 9.89%
6: 9.73%
7: 10.4%
8: 10.06%
9: 9.94%
Output Distribution: Random.randrange(0, 10)
Approximate Single Execution Time: Min: 1250ns, Mid: 1312ns, Max: 1625ns
Raw Samples: 9, 7, 4, 2, 5
Test Samples: 10000
Sample Statistics:
Minimum: 0
Median: 4
Maximum: 9
Mean: 4.466
Std Deviation: 2.871736179886427
Sample Distribution:
0: 9.92%
1: 10.51%
2: 10.05%
3: 10.17%
4: 9.74%
5: 10.38%
6: 9.6%
7: 9.98%
8: 9.69%
9: 9.96%
Output Distribution: randrange(0, 10)
Approximate Single Execution Time: Min: 62ns, Mid: 93ns, Max: 500ns
Raw Samples: 4, 7, 6, 9, 6
Test Samples: 10000
Sample Statistics:
Minimum: 0
Median: 4
Maximum: 9
Mean: 4.4905
Std Deviation: 2.863132812663481
Sample Distribution:
0: 10.15%
1: 9.73%
2: 9.67%
3: 10.5%
4: 10.36%
5: 10.11%
6: 9.39%
7: 10.3%
8: 10.06%
9: 9.73%
Output Distribution: Random.randrange(0, 10, 2)
Approximate Single Execution Time: Min: 1406ns, Mid: 1437ns, Max: 1968ns
Raw Samples: 0, 6, 4, 8, 4
Test Samples: 10000
Sample Statistics:
Minimum: 0
Median: 4
Maximum: 8
Mean: 3.9998
Std Deviation: 2.840494112065728
Sample Distribution:
0: 20.09%
2: 20.32%
4: 19.36%
6: 19.97%
8: 20.26%
Output Distribution: randrange(0, 10, 2)
Approximate Single Execution Time: Min: 62ns, Mid: 93ns, Max: 125ns
Raw Samples: 4, 8, 4, 4, 8
Test Samples: 10000
Sample Statistics:
Minimum: 0
Median: 4
Maximum: 8
Mean: 4.036
Std Deviation: 2.824942836625729
Sample Distribution:
0: 19.54%
2: 19.98%
4: 19.88%
6: 20.34%
8: 20.26%
Output Distribution: Random.sample([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], k=10)
Approximate Single Execution Time: Min: 11718ns, Mid: 21156ns, Max: 38281ns
Raw Samples: [8, 1, 2, 5, 9, 6, 0, 3, 7, 4], [9, 4, 3, 7, 1, 6, 5, 0, 8, 2], [2, 0, 5, 6, 9, 1, 3, 7, 8, 4], [4, 2, 0, 8, 7, 3, 1, 5, 9, 6], [5, 9, 0, 8, 3, 7, 4, 1, 2, 6]
Test Samples: 10000
Sample Statistics:
Minimum: 0
Median: 4
Maximum: 9
Mean: 4.4699
Std Deviation: 2.8788057840490433
Sample Distribution:
0: 10.26%
1: 10.23%
2: 10.17%
3: 9.58%
4: 10.23%
5: 9.52%
6: 10.56%
7: 9.75%
8: 9.75%
9: 9.95%
Output Distribution: sample([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], k=10)
Approximate Single Execution Time: Min: 468ns, Mid: 500ns, Max: 812ns
Raw Samples: [8, 5, 6, 2, 0, 1, 7, 4, 3, 9], [8, 9, 4, 1, 5, 0, 7, 6, 2, 3], [3, 1, 5, 9, 0, 7, 2, 6, 4, 8], [0, 1, 8, 4, 7, 5, 2, 3, 9, 6], [6, 2, 7, 4, 9, 3, 8, 1, 5, 0]
Test Samples: 10000
Sample Statistics:
Minimum: 0
Median: 4
Maximum: 9
Mean: 4.4779
Std Deviation: 2.8721658245394477
Sample Distribution:
0: 10.27%
1: 9.65%
2: 10.31%
3: 10.14%
4: 10.03%
5: 9.97%
6: 10.26%
7: 9.36%
8: 10.04%
9: 9.97%
Timer only: py_random.shuffle(some_list) of size 10:
Approximate Single Execution Time: Min: 8468ns, Mid: 11859ns, Max: 22375ns
Timer only: shuffle(some_list) of size 10:
Approximate Single Execution Time: Min: 468ns, Mid: 625ns, Max: 3750ns
Output Distribution: Random.choices([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [10, 9, 8, 7, 6, 5, 4, 3, 2, 1], k=3)
Approximate Single Execution Time: Min: 3718ns, Mid: 3781ns, Max: 7031ns
Raw Samples: [3, 3, 0], [1, 6, 5], [2, 9, 2], [5, 2, 3], [5, 2, 5]
Test Samples: 10000
Sample Statistics:
Minimum: 0
Median: 3
Maximum: 9
Mean: 3.0032
Std Deviation: 2.440734618623634
Sample Distribution:
0: 17.89%
1: 16.58%
2: 14.39%
3: 12.8%
4: 11.11%
5: 9.22%
6: 7.28%
7: 5.34%
8: 3.55%
9: 1.84%
Output Distribution: choices([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [10, 9, 8, 7, 6, 5, 4, 3, 2, 1], k=3)
Approximate Single Execution Time: Min: 1937ns, Mid: 1968ns, Max: 2625ns
Raw Samples: [0, 0, 0], [3, 6, 1], [6, 5, 3], [5, 1, 0], [2, 1, 4]
Test Samples: 10000
Sample Statistics:
Minimum: 0
Median: 3
Maximum: 9
Mean: 3.033
Std Deviation: 2.4537548963393085
Sample Distribution:
0: 17.99%
1: 16.07%
2: 14.28%
3: 12.82%
4: 10.72%
5: 9.83%
6: 7.06%
7: 5.78%
8: 3.69%
9: 1.76%
Output Distribution: Random.choices([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], cum_weights=[10, 19, 27, 34, 40, 45, 49, 52, 54, 55], k=3)
Approximate Single Execution Time: Min: 3000ns, Mid: 3968ns, Max: 9875ns
Raw Samples: [0, 5, 3], [5, 7, 5], [6, 7, 8], [0, 0, 1], [2, 4, 3]
Test Samples: 10000
Sample Statistics:
Minimum: 0
Median: 3
Maximum: 9
Mean: 3.005
Std Deviation: 2.444784795696694
Sample Distribution:
0: 18.14%
1: 16.07%
2: 14.71%
3: 12.8%
4: 11.03%
5: 9.09%
6: 7.33%
7: 5.33%
8: 3.75%
9: 1.75%
Output Distribution: choices([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], cum_weights=[10, 19, 27, 34, 40, 45, 49, 52, 54, 55], k=3)
Approximate Single Execution Time: Min: 1781ns, Mid: 1906ns, Max: 3281ns
Raw Samples: [5, 3, 0], [2, 5, 1], [1, 2, 0], [2, 1, 6], [2, 1, 9]
Test Samples: 10000
Sample Statistics:
Minimum: 0
Median: 3
Maximum: 9
Mean: 2.9671
Std Deviation: 2.434421950078314
Sample Distribution:
0: 18.4%
1: 16.19%
2: 14.96%
3: 13.15%
4: 10.86%
5: 8.67%
6: 7.23%
7: 5.0%
8: 3.88%
9: 1.66%
Output Distribution: Random.normalvariate(0.0, 2.8)
Approximate Single Execution Time: Min: 656ns, Mid: 750ns, Max: 906ns
Raw Samples: 1.0945889894404213, 1.851126536737369, -2.9618921213612577, -2.937221656311652, -0.16192472793860538
Test Samples: 10000
Pre-processor Statistics:
Minimum: -11.708225641563802
Median: (-0.015889527887160065, -0.014926224611675061)
Maximum: 9.94312914939947
Mean: -0.018837119177641474
Std Deviation: 2.7885740523556533
Post-processor Distribution using round method:
-12: 0.01%
-10: 0.01%
-9: 0.1%
-8: 0.3%
-7: 0.63%
-6: 1.44%
-5: 2.86%
-4: 5.18%
-3: 8.04%
-2: 11.12%
-1: 13.63%
0: 14.06%
1: 13.06%
2: 11.28%
3: 7.95%
4: 4.98%
5: 2.95%
6: 1.48%
7: 0.57%
8: 0.29%
9: 0.04%
10: 0.02%
Output Distribution: normalvariate(0.0, 2.8)
Approximate Single Execution Time: Min: 62ns, Mid: 93ns, Max: 1312ns
Raw Samples: -1.9004926275572116, 3.1818195555886923, -0.63228718194078, 2.3442972091954863, -3.5407806815612317
Test Samples: 10000
Pre-processor Statistics:
Minimum: -9.557063001320403
Median: (0.04414526876059948, 0.04495239746866559)
Maximum: 10.544166423515879
Mean: 0.060653915630701646
Std Deviation: 2.8071867564787185
Post-processor Distribution using round method:
-10: 0.01%
-9: 0.09%
-8: 0.23%
-7: 0.65%
-6: 1.34%
-5: 2.48%
-4: 4.99%
-3: 8.43%
-2: 11.36%
-1: 13.31%
0: 13.47%
1: 13.17%
2: 11.1%
3: 8.12%
4: 5.55%
5: 2.86%
6: 1.82%
7: 0.63%
8: 0.31%
9: 0.07%
11: 0.01%
Output Distribution: Random.gauss(1.0, 1.0)
Approximate Single Execution Time: Min: 687ns, Mid: 718ns, Max: 2406ns
Raw Samples: -0.04856580920708087, 1.6611206339937667, 0.39465785891152927, -1.2789484378143747, 0.8425891614414973
Test Samples: 10000
Pre-processor Statistics:
Minimum: -2.6770864666831686
Median: (0.9946288295639921, 0.9949593013459612)
Maximum: 4.816340048962607
Mean: 1.0083207211114693
Std Deviation: 1.001970304972284
Post-processor Distribution using round method:
-3: 0.01%
-2: 0.56%
-1: 5.92%
0: 24.5%
1: 38.12%
2: 23.88%
3: 6.37%
4: 0.62%
5: 0.02%
Output Distribution: gauss(1.0, 1.0)
Approximate Single Execution Time: Min: 93ns, Mid: 109ns, Max: 406ns
Raw Samples: 0.8810998602455568, 1.902120592501416, 0.41509387629061834, 2.021688064088669, 1.932948388265123
Test Samples: 10000
Pre-processor Statistics:
Minimum: -3.2586270844715086
Median: (0.9958965765397435, 0.9959226467543415)
Maximum: 4.724616651607568
Mean: 0.9948751638625993
Std Deviation: 1.0008566742162837
Post-processor Distribution using round method:
-3: 0.04%
-2: 0.58%
-1: 6.24%
0: 24.42%
1: 37.7%
2: 24.34%
3: 6.15%
4: 0.52%
5: 0.01%
Output Distribution: Random.lognormvariate(0.0, 0.5)
Approximate Single Execution Time: Min: 812ns, Mid: 906ns, Max: 1156ns
Raw Samples: 2.246833572600596, 0.9645111839279291, 0.6636826849378116, 1.3839978131643655, 1.5706954151764843
Test Samples: 10000
Pre-processor Statistics:
Minimum: 0.15981420953686484
Median: (1.0055654114426444, 1.005702998417229)
Maximum: 5.456017436839273
Mean: 1.1398101416430748
Std Deviation: 0.6078083453404712
Post-processor Distribution using round method:
0: 8.49%
1: 70.05%
2: 17.78%
3: 3.03%
4: 0.55%
5: 0.1%
Output Distribution: lognormvariate(0.0, 0.5)
Approximate Single Execution Time: Min: 125ns, Mid: 156ns, Max: 1250ns
Raw Samples: 0.6066965782367475, 1.4271907881912627, 1.1825844581178435, 1.0489078657589839, 1.0910982138156802
Test Samples: 10000
Pre-processor Statistics:
Minimum: 0.14300163818926936
Median: (0.9973151890283786, 0.997319527185987)
Maximum: 7.567457042916076
Mean: 1.1332803435012233
Std Deviation: 0.6066865380411258
Post-processor Distribution using round method:
0: 8.18%
1: 71.25%
2: 17.33%
3: 2.65%
4: 0.42%
5: 0.1%
6: 0.04%
7: 0.02%
8: 0.01%
Output Distribution: Random.expovariate(1.0)
Approximate Single Execution Time: Min: 375ns, Mid: 406ns, Max: 1593ns
Raw Samples: 1.2337990761513633, 1.5656435339285415, 1.770694773297028, 0.28004743268476107, 0.8701519551946996
Test Samples: 10000
Pre-processor Statistics:
Minimum: 7.712397078721108e-05
Median: (0.6753464213622776, 0.6753556217178839)
Maximum: 9.267290446836705
Mean: 0.9810148662264948
Std Deviation: 0.9873271774761467
Post-processor Distribution using floor method:
0: 63.78%
1: 23.11%
2: 8.4%
3: 3.0%
4: 0.98%
5: 0.51%
6: 0.16%
7: 0.03%
8: 0.02%
9: 0.01%
Output Distribution: expovariate(1.0)
Approximate Single Execution Time: Min: 62ns, Mid: 62ns, Max: 218ns
Raw Samples: 0.35004896542529634, 0.7521903548598108, 0.6644403202167085, 1.8911031655814987, 0.558048214159425
Test Samples: 10000
Pre-processor Statistics:
Minimum: 6.644382015650171e-05
Median: (0.7169369707905694, 0.7170402221064897)
Maximum: 9.306503530580908
Mean: 1.013829457246176
Std Deviation: 1.004048810663322
Post-processor Distribution using floor method:
0: 62.12%
1: 24.18%
2: 8.53%
3: 3.31%
4: 1.11%
5: 0.49%
6: 0.2%
7: 0.04%
8: 0.01%
9: 0.01%
Output Distribution: Random.vonmisesvariate(0, 0)
Approximate Single Execution Time: Min: 250ns, Mid: 250ns, Max: 406ns
Raw Samples: 1.711873065039154, 1.8155637533557154, 3.488005794231086, 3.673855226384723, 0.12741299711745097
Test Samples: 10000
Pre-processor Statistics:
Minimum: 0.00038293266481131174
Median: (3.0929184882969425, 3.0929605598731063)
Maximum: 6.283071361639183
Mean: 3.129118147133524
Std Deviation: 1.8148072284571526
Post-processor Distribution using floor method:
0: 15.87%
1: 16.3%
2: 16.36%
3: 15.81%
4: 15.26%
5: 15.82%
6: 4.58%
Output Distribution: vonmisesvariate(0, 0)
Approximate Single Execution Time: Min: 62ns, Mid: 93ns, Max: 156ns
Raw Samples: 2.347787422324325, 2.6585671498632215, 0.8471642169486492, 3.6901718326782373, 0.08759662936635199
Test Samples: 10000
Pre-processor Statistics:
Minimum: 0.00017558418882149027
Median: (3.1241935094422715, 3.1246352372680475)
Maximum: 6.282724684514234
Mean: 3.133330549659671
Std Deviation: 1.806891610737431
Post-processor Distribution using floor method:
0: 16.09%
1: 16.04%
2: 15.59%
3: 16.0%
4: 16.01%
5: 16.1%
6: 4.17%
Output Distribution: Random.gammavariate(2.0, 1.0)
Approximate Single Execution Time: Min: 1468ns, Mid: 1656ns, Max: 3500ns
Raw Samples: 3.70818189243767, 0.5942649681647911, 1.217723931010412, 3.7362885153937313, 0.5860116040765794
Test Samples: 10000
Pre-processor Statistics:
Minimum: 0.010288248066869777
Median: (1.663342418919281, 1.6641108355728298)
Maximum: 11.885151723187366
Mean: 2.0007216926775726
Std Deviation: 1.4115535772792656
Post-processor Distribution using round method:
0: 8.79%
1: 35.36%
2: 27.11%
3: 14.72%
4: 8.01%
5: 3.38%
6: 1.57%
7: 0.62%
8: 0.27%
9: 0.1%
10: 0.04%
11: 0.02%
12: 0.01%
Output Distribution: gammavariate(2.0, 1.0)
Approximate Single Execution Time: Min: 125ns, Mid: 187ns, Max: 1187ns
Raw Samples: 0.9668075190803687, 4.364833765600433, 2.2350993424976027, 3.499852592243818, 0.6492622193040826
Test Samples: 10000
Pre-processor Statistics:
Minimum: 0.008494152265271726
Median: (1.68020041442155, 1.6803557131399585)
Maximum: 13.883282619182093
Mean: 1.9971439163233273
Std Deviation: 1.4086252755537527
Post-processor Distribution using round method:
0: 9.28%
1: 34.54%
2: 27.62%
3: 14.83%
4: 7.76%
5: 3.31%
6: 1.52%
7: 0.77%
8: 0.23%
9: 0.09%
10: 0.02%
11: 0.01%
12: 0.01%
14: 0.01%
Output Distribution: Random.betavariate(3.0, 3.0)
Approximate Single Execution Time: Min: 2531ns, Mid: 2687ns, Max: 3000ns
Raw Samples: 0.5809440127629767, 0.3689167280518387, 0.05290086951440652, 0.41590309091802863, 0.7244821099620002
Test Samples: 10000
Pre-processor Statistics:
Minimum: 0.0230146293568755
Median: (0.5027637818756018, 0.5027651391510145)
Maximum: 0.9590772173935096
Mean: 0.501293841629715
Std Deviation: 0.18855333026430554
Post-processor Distribution using round method:
0: 49.45%
1: 50.55%
Output Distribution: betavariate(3.0, 3.0)
Approximate Single Execution Time: Min: 156ns, Mid: 187ns, Max: 218ns
Raw Samples: 0.5195148558676725, 0.29901952381642627, 0.9351617473036777, 0.6204740258891677, 0.4103905177545022
Test Samples: 10000
Pre-processor Statistics:
Minimum: 0.026027898867851357
Median: (0.503049870649383, 0.5031300801833846)
Maximum: 0.976373375329432
Mean: 0.5035024300342954
Std Deviation: 0.18848398338837413
Post-processor Distribution using round method:
0: 49.43%
1: 50.57%
Output Distribution: Random.paretovariate(4.0)
Approximate Single Execution Time: Min: 343ns, Mid: 468ns, Max: 1187ns
Raw Samples: 1.6548218778756214, 1.0235199111524522, 1.256346134216108, 1.0423385596705579, 2.2672133974436566
Test Samples: 10000
Pre-processor Statistics:
Minimum: 1.0000134877377684
Median: (1.1906883033271822, 1.1907007488491919)
Maximum: 9.219189527235306
Mean: 1.3336054431486195
Std Deviation: 0.45780273399460525
Post-processor Distribution using floor method:
1: 93.75%
2: 4.97%
3: 0.85%
4: 0.28%
5: 0.09%
6: 0.03%
7: 0.02%
9: 0.01%
Output Distribution: paretovariate(4.0)
Approximate Single Execution Time: Min: 125ns, Mid: 125ns, Max: 906ns
Raw Samples: 1.0550143670856882, 1.0050815871468337, 5.096213485229597, 1.3552499822938424, 1.2181203297870125
Test Samples: 10000
Pre-processor Statistics:
Minimum: 1.0000524852335335
Median: (1.190669453818392, 1.1907657256629907)
Maximum: 10.32025392131445
Mean: 1.3364535046358461
Std Deviation: 0.4788482240084414
Post-processor Distribution using floor method:
1: 93.77%
2: 4.87%
3: 0.9%
4: 0.33%
5: 0.02%
6: 0.05%
7: 0.01%
8: 0.02%
9: 0.01%
10: 0.02%
Output Distribution: Random.weibullvariate(1.0, 1.0)
Approximate Single Execution Time: Min: 468ns, Mid: 500ns, Max: 875ns
Raw Samples: 0.7109199007437706, 0.04102203536063654, 0.4325449725685951, 0.3737481714553773, 3.5602673588552496
Test Samples: 10000
Pre-processor Statistics:
Minimum: 0.00024085418653614605
Median: (0.6911545687152738, 0.6911593764707898)
Maximum: 9.315446615045776
Mean: 1.0049374144494887
Std Deviation: 0.9994000170896726
Post-processor Distribution using floor method:
0: 62.71%
1: 23.62%
2: 8.75%
3: 3.06%
4: 1.26%
5: 0.36%
6: 0.16%
7: 0.04%
8: 0.02%
9: 0.02%
Output Distribution: weibullvariate(1.0, 1.0)
Approximate Single Execution Time: Min: 93ns, Mid: 93ns, Max: 156ns
Raw Samples: 0.4626531359780423, 0.13366462363073986, 0.4173599247687062, 0.548432697308713, 0.6910796015830221
Test Samples: 10000
Pre-processor Statistics:
Minimum: 3.6780355233384826e-05
Median: (0.6835891558049825, 0.683910404754705)
Maximum: 11.105956344388273
Mean: 0.9955431658581466
Std Deviation: 0.9943143982554206
Post-processor Distribution using floor method:
0: 63.66%
1: 22.88%
2: 8.69%
3: 2.96%
4: 1.12%
5: 0.45%
6: 0.19%
7: 0.03%
8: 0.01%
11: 0.01%
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file Pyewacket-0.0.1b3.tar.gz.
File metadata
- Download URL: Pyewacket-0.0.1b3.tar.gz
- Upload date:
- Size: 116.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.0 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.27.0 CPython/3.7.2
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
8105dfced8e7989c89c0e6344faa79a526b5bfa761d04f6ee4c8df360f22b557
|
|
| MD5 |
6a2a142cddd8c97f9a30fff6e15d04bc
|
|
| BLAKE2b-256 |
17f25ed47b1f47c1b983787d262ff817635c9e7930a58b6c774fe4ea7ed15ffc
|
File details
Details for the file Pyewacket-0.0.1b3-cp37-cp37m-macosx_10_9_x86_64.whl.
File metadata
- Download URL: Pyewacket-0.0.1b3-cp37-cp37m-macosx_10_9_x86_64.whl
- Upload date:
- Size: 121.2 kB
- Tags: CPython 3.7m, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.0 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.27.0 CPython/3.7.2
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
4a0c4ebf2dc786832bc9bc03bad372f14576b503ee9ad992316b0e7ee821b7a5
|
|
| MD5 |
0639d5c59d20e7c3f95985ae0d8e2b56
|
|
| BLAKE2b-256 |
b5ffd0775cd7bbbe882393770baf1e717987f3ff0066d2693c3d79e6b92e8e99
|