Skip to main content

Tools for sensitivity analysis. Contains Sobol, Morris, and FAST methods

Project description

## Sensitivity Analysis Library (SALib)

Python implementations of commonly used sensitivity analysis methods. Useful in systems modeling to calculate the effects of model inputs or exogenous factors on outputs of interest.

**Documentation:** [ReadTheDocs](http://salib.readthedocs.org)

**Requirements:** [NumPy](http://www.numpy.org/), [SciPy](http://www.scipy.org/), [matplotlib](http://matplotlib.org/)

**Installation:** `pip install SALib` or `python setup.py install`

**Build Status:** [![Build Status](https://travis-ci.org/SALib/SALib.svg?branch=master)](https://travis-ci.org/SALib/SALib) **Test Coverage:** [![Coverage Status](https://img.shields.io/coveralls/SALib/SALib.svg)](https://coveralls.io/r/SALib/SALib)

**Code Issues:** [![Code Issues](https://www.quantifiedcode.com/api/v1/project/ed62e70f899e4ec8af4ea6b2212d4b30/badge.svg)](https://www.quantifiedcode.com/app/project/ed62e70f899e4ec8af4ea6b2212d4b30)

**SALib Paper:** [![status](http://joss.theoj.org/papers/431262803744581c1d4b6a95892d3343/status.svg)](http://joss.theoj.org/papers/431262803744581c1d4b6a95892d3343)
```
Herman, J. and Usher, W. (2017) SALib: An open-source Python library for sensitivity analysis.
Journal of Open Source Software, 2(9).
```

**Methods included:**
* Sobol Sensitivity Analysis ([Sobol 2001](http://www.sciencedirect.com/science/article/pii/S0378475400002706), [Saltelli 2002](http://www.sciencedirect.com/science/article/pii/S0010465502002801), [Saltelli et al. 2010](http://www.sciencedirect.com/science/article/pii/S0010465509003087))
* Method of Morris, including groups and optimal trajectories ([Morris 1991](http://www.tandfonline.com/doi/abs/10.1080/00401706.1991.10484804), [Campolongo et al. 2007](http://www.sciencedirect.com/science/article/pii/S1364815206002805))
* Fourier Amplitude Sensitivity Test (FAST) ([Cukier et al. 1973](http://scitation.aip.org/content/aip/journal/jcp/59/8/10.1063/1.1680571), [Saltelli et al. 1999](http://amstat.tandfonline.com/doi/abs/10.1080/00401706.1999.10485594))
* Random Balance Designs - Fourier Amplitude Sensitivity Test (RBD-FAST)
([Tarantola et al. 2006](https://hal.archives-ouvertes.fr/hal-01065897/file/Tarantola06RESS_HAL.pdf), [Plischke 2010](https://doi.org/10.1016/j.ress.2009.11.005), [Tissot et al. 2012](https://doi.org/10.1016/j.ress.2012.06.010))
* Delta Moment-Independent Measure ([Borgonovo 2007](http://www.sciencedirect.com/science/article/pii/S0951832006000883), [Plischke et al. 2013](http://www.sciencedirect.com/science/article/pii/S0377221712008995))
* Derivative-based Global Sensitivity Measure (DGSM) ([Sobol and Kucherenko 2009](http://www.sciencedirect.com/science/article/pii/S0378475409000354))
* Fractional Factorial Sensitivity Analysis ([Saltelli et al. 2008](http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470059974.html))

**Contributing:** see [here](CONTRIBUTING.md)

### Quick Start
```python
from SALib.sample import saltelli
from SALib.analyze import sobol
from SALib.test_functions import Ishigami
import numpy as np

problem = {
'num_vars': 3,
'names': ['x1', 'x2', 'x3'],
'bounds': [[-np.pi, np.pi]]*3
}

# Generate samples
param_values = saltelli.sample(problem, 1000)

# Run model (example)
Y = Ishigami.evaluate(param_values)

# Perform analysis
Si = sobol.analyze(problem, Y, print_to_console=True)
# Returns a dictionary with keys 'S1', 'S1_conf', 'ST', and 'ST_conf'
# (first and total-order indices with bootstrap confidence intervals)
```

It's also possible to specify the parameter bounds in a file with 3 columns:
```
# name lower_bound upper_bound
P1 0.0 1.0
P2 0.0 5.0
...etc.
```

Then the `problem` dictionary above can be created from the `read_param_file` function:
```python
from SALib.util import read_param_file
problem = read_param_file('/path/to/file.txt')
# ... same as above
```

Lots of other options are included for parameter files, as well as a command-line interface. See the [advanced readme](README-advanced.md).

Also check out the [examples](https://github.com/SALib/SALib/tree/master/examples) for a full description of options for each method.

### License
Copyright (C) 2018 Jon Herman, Will Usher, and others. Versions v0.5 and later are released under the [MIT license](LICENSE.md).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
SALib-1.1.3.tar.gz (735.4 kB) Copy SHA256 hash SHA256 Source None Jan 24, 2018

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page