Skip to main content
This is a pre-production deployment of Warehouse. Changes made here affect the production instance of PyPI (
Help us improve Python packaging - Donate today!

Tools for sensitivity analysis. Contains Sobol, Morris, and FAST methods

Project Description
## Sensitivity Analysis Library (SALib)

Python implementations of commonly used sensitivity analysis methods. Useful in systems modeling to calculate the effects of model inputs or exogenous factors on outputs of interest.

**Documentation:** [ReadTheDocs](

**Requirements:** [NumPy](, [SciPy](, [matplotlib](

**Installation:** `pip install SALib` or `python install`

**Build Status:** [![Build Status](]( **Test Coverage:** [![Coverage Status](](

**Code Issues:** [![Code Issues](](

**SALib Paper:** [![status](](
Herman, J. and Usher, W. (2017) SALib: An open-source Python library for sensitivity analysis.
Journal of Open Source Software, 2(9).

**Methods included:**
* Sobol Sensitivity Analysis ([Sobol 2001](, [Saltelli 2002](, [Saltelli et al. 2010](
* Method of Morris, including groups and optimal trajectories ([Morris 1991](, [Campolongo et al. 2007](
* Fourier Amplitude Sensitivity Test (FAST) ([Cukier et al. 1973](, [Saltelli et al. 1999](
* Delta Moment-Independent Measure ([Borgonovo 2007](, [Plischke et al. 2013](
* Derivative-based Global Sensitivity Measure (DGSM) ([Sobol and Kucherenko 2009](
* Fractional Factorial Sensitivity Analysis ([Saltelli et al. 2008](

**Contributing:** see [here](

### Quick Start
from SALib.sample import saltelli
from SALib.analyze import sobol
from SALib.test_functions import Ishigami
import numpy as np

problem = {
'num_vars': 3,
'names': ['x1', 'x2', 'x3'],
'bounds': [[-np.pi, np.pi]]*3

# Generate samples
param_values = saltelli.sample(problem, 1000, calc_second_order=False)

# Run model (example)
Y = Ishigami.evaluate(param_values)

# Perform analysis
Si = sobol.analyze(problem, Y, print_to_console=True)
# Returns a dictionary with keys 'S1', 'S1_conf', 'ST', and 'ST_conf'
# (first and total-order indices with bootstrap confidence intervals)

It's also possible to specify the parameter bounds in a file with 3 columns:
# name lower_bound upper_bound
P1 0.0 1.0
P2 0.0 5.0

Then the `problem` dictionary above can be created from the `read_param_file` function:
from SALib.util import read_param_file
problem = read_param_file('/path/to/file.txt')
# ... same as above

Lots of other options are included for parameter files, as well as a command-line interface. See the [advanced readme](

Also check out the [examples]( for a full description of options for each method.

### License
Copyright (C) 2017 Jon Herman, Will Usher, and others. Versions v0.5 and later are released under the [MIT license](
Release History

Release History

This version
History Node


History Node


History Node


History Node


History Node


History Node


History Node


History Node


History Node


History Node


History Node


History Node


History Node


History Node


Download Files

Download Files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date
SALib-1.1.0.tar.gz (733.2 kB) Copy SHA256 Checksum SHA256 Source Aug 30, 2017

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting