Skip to main content

Fork of the original SfMLearner with a setup.py file for installation with pip.

Project description

Fork of SfMLearner

This fork is of SfMLearner, nothing changed with it but includes a setup.py file so the repo can be installed via pip using the command:

pip install SfMLearner-installable

SfMLearner

This codebase implements the system described in the paper:

Unsupervised Learning of Depth and Ego-Motion from Video

Tinghui Zhou, Matthew Brown, Noah Snavely, David G. Lowe

In CVPR 2017 (Oral).

See the project webpage for more details. Please contact Tinghui Zhou (tinghuiz@berkeley.edu) if you have any questions.

Prerequisites

This codebase was developed and tested with Tensorflow 1.0, CUDA 8.0 and Ubuntu 16.04.

Running the single-view depth demo

We provide the demo code for running our single-view depth prediction model. First, download the pre-trained model from this Google Drive, and put the model files under models/. Then you can use the provided ipython-notebook demo.ipynb to run the demo.

Preparing training data

In order to train the model using the provided code, the data needs to be formatted in a certain manner.

For KITTI, first download the dataset using this script provided on the official website, and then run the following command

python data/prepare_train_data.py --dataset_dir=/path/to/raw/kitti/dataset/ --dataset_name='kitti_raw_eigen' --dump_root=/path/to/resulting/formatted/data/ --seq_length=3 --img_width=416 --img_height=128 --num_threads=4

For the pose experiments, we used the KITTI odometry split, which can be downloaded here. Then you can change --dataset_name option to kitti_odom when preparing the data.

For Cityscapes, download the following packages: 1) leftImg8bit_sequence_trainvaltest.zip, 2) camera_trainvaltest.zip. Then run the following command

python data/prepare_train_data.py --dataset_dir=/path/to/cityscapes/dataset/ --dataset_name='cityscapes' --dump_root=/path/to/resulting/formatted/data/ --seq_length=3 --img_width=416 --img_height=171 --num_threads=4

Notice that for Cityscapes the img_height is set to 171 because we crop out the bottom part of the image that contains the car logo, and the resulting image will have height 128.

Training

Once the data are formatted following the above instructions, you should be able to train the model by running the following command

python train.py --dataset_dir=/path/to/the/formatted/data/ --checkpoint_dir=/where/to/store/checkpoints/ --img_width=416 --img_height=128 --batch_size=4

You can then start a tensorboard session by

tensorboard --logdir=/path/to/tensorflow/log/files --port=8888

and visualize the training progress by opening https://localhost:8888 on your browser. If everything is set up properly, you should start seeing reasonable depth prediction after ~100K iterations when training on KITTI.

Notes

After adding data augmentation and removing batch normalization (along with some other minor tweaks), we have been able to train depth models better than what was originally reported in the paper even without using additional Cityscapes data or the explainability regularization. The provided pre-trained model was trained on KITTI only with smooth weight set to 0.5, and achieved the following performance on the Eigen test split (Table 1 of the paper):

Abs Rel Sq Rel RMSE RMSE(log) Acc.1 Acc.2 Acc.3
0.183 1.595 6.709 0.270 0.734 0.902 0.959

When trained on 5-frame snippets, the pose model obtains the following performanace on the KITTI odometry split (Table 3 of the paper):

Seq. 09 Seq. 10
0.016 (std. 0.009) 0.013 (std. 0.009)

Evaluation on KITTI

Depth

We provide evaluation code for the single-view depth experiment on KITTI. First, download our predictions (~140MB) from this Google Drive and put them into kitti_eval/.

Then run

python kitti_eval/eval_depth.py --kitti_dir=/path/to/raw/kitti/dataset/ --pred_file=kitti_eval/kitti_eigen_depth_predictions.npy

If everything runs properly, you should get the numbers for Ours(CS+K) in Table 1 of the paper. To get the numbers for Ours cap 50m (CS+K), set an additional flag --max_depth=50 when executing the above command.

Pose

We provide evaluation code for the pose estimation experiment on KITTI. First, download the predictions and ground-truth pose data from this Google Drive.

Notice that all the predictions and ground-truth are 5-frame snippets with the format of timestamp tx ty tz qx qy qz qw consistent with the TUM evaluation toolkit. Then you could run

python kitti_eval/eval_pose.py --gtruth_dir=/directory/of/groundtruth/trajectory/files/ --pred_dir=/directory/of/predicted/trajectory/files/

to obtain the results reported in Table 3 of the paper. For instance, to get the results of Ours for Seq. 10 you could run

python kitti_eval/eval_pose.py --gtruth_dir=kitti_eval/pose_data/ground_truth/10/ --pred_dir=kitti_eval/pose_data/ours_results/10/

KITTI Testing code

Depth

Once you have model trained, you can obtain the single-view depth predictions on the KITTI eigen test split formatted properly for evaluation by running

python test_kitti_depth.py --dataset_dir /path/to/raw/kitti/dataset/ --output_dir /path/to/output/directory --ckpt_file /path/to/pre-trained/model/file/

Pose

We also provide sample testing code for obtaining pose predictions on the KITTI dataset with a pre-trained model. You can obtain the predictions formatted as above for pose evaluation by running

python test_kitti_pose.py --test_seq [sequence_id] --dataset_dir /path/to/KITTI/odometry/set/ --output_dir /path/to/output/directory/ --ckpt_file /path/to/pre-trained/model/file/

A sample model trained on 5-frame snippets can be downloaded at this Google Drive.

Then you can obtain predictions on, say Seq. 9, by running

python test_kitti_pose.py --test_seq 9 --dataset_dir /path/to/KITTI/odometry/set/ --output_dir /path/to/output/directory/ --ckpt_file models/model-100280

Other implementations

Pytorch (by Clement Pinard)

Disclaimer

This is the authors' implementation of the system described in the paper and not an official Google product.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

SfMLearner_installable-1.0.1.tar.gz (19.5 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

SfMLearner_installable-1.0.1-py2.py3-none-any.whl (22.2 kB view details)

Uploaded Python 2Python 3

File details

Details for the file SfMLearner_installable-1.0.1.tar.gz.

File metadata

  • Download URL: SfMLearner_installable-1.0.1.tar.gz
  • Upload date:
  • Size: 19.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.1

File hashes

Hashes for SfMLearner_installable-1.0.1.tar.gz
Algorithm Hash digest
SHA256 d02da7dec9be26bf2513a32e0395ac4ed0c55c2ef5a9207fa61a3fba6bec620f
MD5 dbf25e4aa248a9124601ec9c6e78e9e8
BLAKE2b-256 0083b90c3bbe3621c8d78c7528f7b781a1297e9d20d3e8e2297b9fe1e2df0294

See more details on using hashes here.

File details

Details for the file SfMLearner_installable-1.0.1-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for SfMLearner_installable-1.0.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 728017f7fee6471a1f0f0e3fd9447449e8b0fe0bd7a099ff49401607f6760959
MD5 353faa90937b9bcb4f605cdb52417a99
BLAKE2b-256 c5d9515e8652d101a6ac8bf5c6fb187038774ef0d96806c3b54204a8c491eef8

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page