An easy-to-use Library for interacting with language models.
Project description
SimplerLLM
Your Easy Pass to Advanced AI - A comprehensive Python library for simplified Large Language Model interactions.
Overview
SimplerLLM is an open-source Python library designed to simplify interactions with Large Language Models (LLMs) for researchers, developers, and AI enthusiasts. It provides a unified interface for multiple LLM providers, robust tools for content processing, and advanced features like reliable failover systems and intelligent routing.
Installation
pip install simplerllm
Key Features
🔗 Unified LLM Interface
- 8 LLM Providers: OpenAI, Anthropic, Google Gemini, Cohere, OpenRouter, DeepSeek, and Ollama
- Consistent API: Same interface across all providers
- 100+ Models: Access to diverse models through OpenRouter integration
- Async Support: Full asynchronous capabilities
🛡️ Reliability & Failover
- Reliable LLM: Automatic failover between primary and secondary providers
- Retry Logic: Built-in exponential backoff for failed requests
- Validation: Automatic provider validation during initialization
🎯 Structured Output
- Pydantic Integration: Generate validated JSON responses
- Type Safety: Automatic validation and parsing
- Retry Logic: Automatic retry on validation failures
🔍 Vector Operations
- Multiple Providers: OpenAI, Voyage AI, and Cohere embeddings
- Local & Cloud Storage: Local vector database and Qdrant integration
- Semantic Search: Advanced similarity search capabilities
🧠 Intelligent Routing
- LLM Router: AI-powered content routing and selection
- Metadata Filtering: Route based on content metadata
- Confidence Scoring: Intelligent selection with confidence metrics
🛠️ Advanced Tools
- Content Loading: PDF, DOCX, web pages, and more
- Text Chunking: Semantic, sentence, and paragraph-based chunking
- Search Integration: Serper and Value Serp APIs
- Prompt Templates: Dynamic prompt generation and management
Quick Start
Basic LLM Usage
from SimplerLLM.language.llm import LLM, LLMProvider
# Create LLM instance
llm = LLM.create(provider=LLMProvider.OPENAI, model_name="gpt-4o")
# Generate response
response = llm.generate_response(prompt="Explain quantum computing in simple terms")
print(response)
All Supported Providers
from SimplerLLM.language.llm import LLM, LLMProvider
# OpenAI
openai_llm = LLM.create(provider=LLMProvider.OPENAI, model_name="gpt-4o")
# Anthropic Claude
anthropic_llm = LLM.create(provider=LLMProvider.ANTHROPIC, model_name="claude-3-5-sonnet-20241022")
# Google Gemini
gemini_llm = LLM.create(provider=LLMProvider.GEMINI, model_name="gemini-1.5-pro")
# Cohere
cohere_llm = LLM.create(provider=LLMProvider.COHERE, model_name="command-r-plus")
# OpenRouter (Access to 100+ models)
openrouter_llm = LLM.create(provider=LLMProvider.OPENROUTER, model_name="openai/gpt-4o")
# DeepSeek
deepseek_llm = LLM.create(provider=LLMProvider.DEEPSEEK, model_name="deepseek-chat")
# Ollama (Local models)
ollama_llm = LLM.create(provider=LLMProvider.OLLAMA, model_name="llama2")
Reliable LLM with Failover
from SimplerLLM.language.llm import LLM, LLMProvider
from SimplerLLM.language.llm.reliable import ReliableLLM
# Create primary and secondary LLMs
primary_llm = LLM.create(provider=LLMProvider.OPENAI, model_name="gpt-4o")
secondary_llm = LLM.create(provider=LLMProvider.ANTHROPIC, model_name="claude-3-5-sonnet-20241022")
# Create reliable LLM with automatic failover
reliable_llm = ReliableLLM(primary_llm, secondary_llm)
# If primary fails, automatically uses secondary
response = reliable_llm.generate_response(prompt="Explain machine learning")
print(response)
Structured JSON Output with Pydantic
from pydantic import BaseModel, Field
from SimplerLLM.language.llm import LLM, LLMProvider
from SimplerLLM.language.llm_addons import generate_pydantic_json_model
class MovieRecommendation(BaseModel):
title: str = Field(description="Movie title")
genre: str = Field(description="Movie genre")
year: int = Field(description="Release year")
rating: float = Field(description="IMDb rating")
reason: str = Field(description="Why this movie is recommended")
llm = LLM.create(provider=LLMProvider.OPENAI, model_name="gpt-4o")
prompt = "Recommend a great science fiction movie from the 2020s"
recommendation = generate_pydantic_json_model(
llm_instance=llm,
prompt=prompt,
model_class=MovieRecommendation
)
print(f"Title: {recommendation.title}")
print(f"Genre: {recommendation.genre}")
print(f"Year: {recommendation.year}")
print(f"Rating: {recommendation.rating}")
print(f"Reason: {recommendation.reason}")
Reliable JSON Generation
from SimplerLLM.language.llm.reliable import ReliableLLM
from SimplerLLM.language.llm_addons import generate_pydantic_json_model_reliable
# Use reliable LLM with JSON generation
reliable_llm = ReliableLLM(primary_llm, secondary_llm)
recommendation, provider, model_name = generate_pydantic_json_model_reliable(
reliable_llm=reliable_llm,
prompt=prompt,
model_class=MovieRecommendation
)
print(f"Generated by: {provider.name} using {model_name}")
print(f"Title: {recommendation.title}")
Embeddings
All Embedding Providers
from SimplerLLM.language.embeddings import EmbeddingsLLM, EmbeddingsProvider
# OpenAI Embeddings
openai_embeddings = EmbeddingsLLM.create(
provider=EmbeddingsProvider.OPENAI,
model_name="text-embedding-3-large"
)
# Voyage AI Embeddings
voyage_embeddings = EmbeddingsLLM.create(
provider=EmbeddingsProvider.VOYAGE,
model_name="voyage-3-large"
)
# Cohere Embeddings
cohere_embeddings = EmbeddingsLLM.create(
provider=EmbeddingsProvider.COHERE,
model_name="embed-english-v3.0"
)
# Generate embeddings
text = "SimplerLLM makes AI development easier"
embeddings = openai_embeddings.generate_embeddings(text)
print(f"Embedding dimensions: {len(embeddings)}")
Advanced Embedding Features
# Voyage AI with advanced options
voyage_embeddings = EmbeddingsLLM.create(
provider=EmbeddingsProvider.VOYAGE,
model_name="voyage-3-large"
)
# Optimize for search queries vs documents
query_embeddings = voyage_embeddings.generate_embeddings(
user_input="What is machine learning?",
input_type="query",
output_dimension=1024
)
document_embeddings = voyage_embeddings.generate_embeddings(
user_input="Machine learning is a subset of artificial intelligence...",
input_type="document",
output_dimension=1024
)
# Cohere with different input types
cohere_embeddings = EmbeddingsLLM.create(
provider=EmbeddingsProvider.COHERE,
model_name="embed-english-v3.0"
)
classification_embeddings = cohere_embeddings.generate_embeddings(
user_input="This is a positive review",
input_type="classification"
)
Vector Databases
Local Vector Database
from SimplerLLM.vectors.vector_db import VectorDB, VectorProvider
from SimplerLLM.language.embeddings import EmbeddingsLLM, EmbeddingsProvider
# Create embeddings model
embeddings_model = EmbeddingsLLM.create(
provider=EmbeddingsProvider.OPENAI,
model_name="text-embedding-3-small"
)
# Create local vector database
vector_db = VectorDB.create(provider=VectorProvider.LOCAL)
# Add documents
documents = [
"SimplerLLM is a Python library for LLM interactions",
"Vector databases store high-dimensional embeddings",
"Semantic search finds similar content based on meaning"
]
for i, doc in enumerate(documents):
embedding = embeddings_model.generate_embeddings(doc)
vector_db.add_vector(id=f"doc_{i}", vector=embedding, metadata={"text": doc})
# Search for similar documents
query = "Python library for AI"
query_embedding = embeddings_model.generate_embeddings(query)
results = vector_db.search(query_embedding, top_k=2)
for result in results:
print(f"Score: {result['score']:.4f}")
print(f"Text: {result['metadata']['text']}")
Qdrant Vector Database
from SimplerLLM.vectors.vector_db import VectorDB, VectorProvider
# Create Qdrant vector database
qdrant_db = VectorDB.create(
provider=VectorProvider.QDRANT,
url="http://localhost:6333",
collection_name="my_collection"
)
# Same interface as local vector database
embedding = embeddings_model.generate_embeddings("Sample document")
qdrant_db.add_vector(id="doc_1", vector=embedding, metadata={"text": "Sample document"})
Intelligent Routing
from SimplerLLM.language.llm_router.router import LLMRouter
from SimplerLLM.language.llm import LLM, LLMProvider
# Create router with LLM
llm = LLM.create(provider=LLMProvider.OPENAI, model_name="gpt-4o")
router = LLMRouter(llm)
# Add choices
choices = [
("Machine Learning Tutorial", {"category": "education", "difficulty": "beginner"}),
("Advanced Deep Learning", {"category": "education", "difficulty": "advanced"}),
("Python Programming Guide", {"category": "programming", "difficulty": "intermediate"})
]
router.add_choices(choices)
# Route based on input
result = router.route("I want to learn the basics of AI")
if result:
print(f"Selected: {result.selected_index}")
print(f"Confidence: {result.confidence_score}")
print(f"Reasoning: {result.reasoning}")
# Get top 3 matches
top_results = router.route_top_k("programming tutorial", k=3)
for result in top_results:
choice_content, metadata = router.get_choice(result.selected_index)
print(f"Choice: {choice_content}")
print(f"Confidence: {result.confidence_score}")
Advanced Tools
Content Loading
from SimplerLLM.tools.generic_loader import load_content
# Load from various sources
pdf_content = load_content("document.pdf")
web_content = load_content("https://example.com/article")
docx_content = load_content("document.docx")
print(f"PDF content: {pdf_content.content[:100]}...")
print(f"Web content: {web_content.content[:100]}...")
Text Chunking
from SimplerLLM.tools.text_chunker import (
chunk_by_sentences,
chunk_by_paragraphs,
chunk_by_semantics,
chunk_by_max_chunk_size
)
from SimplerLLM.language.embeddings import EmbeddingsLLM, EmbeddingsProvider
text = "Your long document text here..."
# Sentence-based chunking
sentence_chunks = chunk_by_sentences(text, max_sentences=3)
# Paragraph-based chunking
paragraph_chunks = chunk_by_paragraphs(text, max_paragraphs=2)
# Semantic chunking
embeddings_model = EmbeddingsLLM.create(
provider=EmbeddingsProvider.OPENAI,
model_name="text-embedding-3-small"
)
semantic_chunks = chunk_by_semantics(text, embeddings_model, threshold_percentage=80)
# Size-based chunking
size_chunks = chunk_by_max_chunk_size(text, max_chunk_size=1000)
Search Integration
from SimplerLLM.tools.serp import search_with_serper_api
# Search the web
results = search_with_serper_api("latest AI developments", num_results=5)
for result in results:
print(f"Title: {result['title']}")
print(f"URL: {result['link']}")
print(f"Snippet: {result['snippet']}")
Prompt Templates
from SimplerLLM.prompts.prompt_builder import create_prompt_template, create_multi_value_prompts
# Single prompt template
template = create_prompt_template("Write a {style} article about {topic}")
template.assign_params(style="technical", topic="machine learning")
print(template.content)
# Multi-value prompts
multi_template = create_multi_value_prompts(
"Hello {name}, your meeting is on {date} about {topic}"
)
params_list = [
{"name": "Alice", "date": "Monday", "topic": "AI"},
{"name": "Bob", "date": "Tuesday", "topic": "ML"},
]
prompts = multi_template.generate_prompts(params_list)
for prompt in prompts:
print(prompt)
Configuration
Environment Variables
Create a .env file in your project root:
# LLM Providers
OPENAI_API_KEY=your_openai_api_key
ANTHROPIC_API_KEY=your_anthropic_api_key
GEMINI_API_KEY=your_gemini_api_key
COHERE_API_KEY=your_cohere_api_key
OPENROUTER_API_KEY=your_openrouter_api_key
OPENROUTER_SITE_URL=your_site_url # Optional
OPENROUTER_SITE_NAME=your_site_name # Optional
# Embeddings
VOYAGE_API_KEY=your_voyage_api_key
# Tools
RAPIDAPI_API_KEY=your_rapidapi_key
SERPER_API_KEY=your_serper_api_key
VALUE_SERP_API_KEY=your_value_serp_api_key
STABILITY_API_KEY=your_stability_api_key
Async Support
Most functions support async operations:
import asyncio
from SimplerLLM.language.llm import LLM, LLMProvider
from SimplerLLM.language.llm_addons import generate_pydantic_json_model_async
async def main():
llm = LLM.create(provider=LLMProvider.OPENAI, model_name="gpt-4o")
# Async response generation
response = await llm.generate_response_async(prompt="What is async programming?")
print(response)
# Async JSON generation
result = await generate_pydantic_json_model_async(
llm_instance=llm,
prompt="Generate a product review",
model_class=MovieRecommendation
)
print(result)
asyncio.run(main())
Error Handling and Best Practices
Robust Error Handling
from SimplerLLM.language.llm import LLM, LLMProvider
from SimplerLLM.language.llm_addons import generate_pydantic_json_model
try:
llm = LLM.create(provider=LLMProvider.OPENAI, model_name="gpt-4o")
result = generate_pydantic_json_model(
llm_instance=llm,
prompt="Generate a summary",
model_class=MovieRecommendation,
max_retries=3
)
if isinstance(result, str): # Error case
print(f"Error: {result}")
else:
print(f"Success: {result}")
except Exception as e:
print(f"Exception: {e}")
Cost Calculation
from SimplerLLM.language.llm_addons import calculate_text_generation_costs
input_text = "Your input prompt here"
output_text = "Generated response here"
cost_info = calculate_text_generation_costs(
input=input_text,
response=output_text,
cost_per_million_input_tokens=2.50, # Example: GPT-4 pricing
cost_per_million_output_tokens=10.00,
approximate=True # Use approximate token counting
)
print(f"Input tokens: {cost_info['input_tokens']}")
print(f"Output tokens: {cost_info['output_tokens']}")
print(f"Total cost: ${cost_info['total_cost']:.6f}")
License
This project is licensed under the MIT License - see the LICENSE file for details.
Support
SimplerLLM - Making AI development simpler, one line of code at a time.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file simplerllm-0.3.1.22.tar.gz.
File metadata
- Download URL: simplerllm-0.3.1.22.tar.gz
- Upload date:
- Size: 176.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.13.2
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
2bdc1be114c6ae6b2b2fddba501ffe083ec296b645cc9c649a0fe2cd3acf9d0b
|
|
| MD5 |
c08c01be4045a167d28be3b62ee9357a
|
|
| BLAKE2b-256 |
a86f9de67f1df1a5dbd0cdb5a137b69206279f9c97f4358f3214bde8d6e85c0a
|
File details
Details for the file simplerllm-0.3.1.22-py3-none-any.whl.
File metadata
- Download URL: simplerllm-0.3.1.22-py3-none-any.whl
- Upload date:
- Size: 148.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.13.2
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
d637c8e608dc4c24ab7691499155fc6be47833521120673613f10d6adac0cfba
|
|
| MD5 |
5aa3f4034226f41658484f2e3eee01a4
|
|
| BLAKE2b-256 |
76d3d4ec875a3d0de4fdf6a1aae25e8baa35393ac3301862485aa0a31380712a
|