Skip to main content

An easy-to-use Library for interacting with language models.

Project description

SimplerLLM

License: MIT Join the Discord chat!

Your Easy Pass to Advanced AI - A comprehensive Python library for simplified Large Language Model interactions.

Overview

SimplerLLM is an open-source Python library designed to simplify interactions with Large Language Models (LLMs) for researchers, developers, and AI enthusiasts. It provides a unified interface for multiple LLM providers, robust tools for content processing, and advanced features like reliable failover systems and intelligent routing.

📚 Full Documentation

Installation

pip install simplerllm

Key Features

🔗 Unified LLM Interface

  • 8 LLM Providers: OpenAI, Anthropic, Google Gemini, Cohere, OpenRouter, DeepSeek, and Ollama
  • Consistent API: Same interface across all providers
  • 100+ Models: Access to diverse models through OpenRouter integration
  • Async Support: Full asynchronous capabilities

🛡️ Reliability & Failover

  • Reliable LLM: Automatic failover between primary and secondary providers
  • Retry Logic: Built-in exponential backoff for failed requests
  • Validation: Automatic provider validation during initialization

🎯 Structured Output

  • Pydantic Integration: Generate validated JSON responses
  • Type Safety: Automatic validation and parsing
  • Retry Logic: Automatic retry on validation failures

🔍 Vector Operations

  • Multiple Providers: OpenAI, Voyage AI, and Cohere embeddings
  • Local & Cloud Storage: Local vector database and Qdrant integration
  • Semantic Search: Advanced similarity search capabilities

🧠 Intelligent Routing

  • LLM Router: AI-powered content routing and selection
  • Metadata Filtering: Route based on content metadata
  • Confidence Scoring: Intelligent selection with confidence metrics

🛠️ Advanced Tools

  • Content Loading: PDF, DOCX, web pages, and more
  • Text Chunking: Semantic, sentence, and paragraph-based chunking
  • Search Integration: Serper and Value Serp APIs
  • Prompt Templates: Dynamic prompt generation and management

Quick Start

Basic LLM Usage

from SimplerLLM.language.llm import LLM, LLMProvider

# Create LLM instance
llm = LLM.create(provider=LLMProvider.OPENAI, model_name="gpt-4o")

# Generate response
response = llm.generate_response(prompt="Explain quantum computing in simple terms")
print(response)

All Supported Providers

from SimplerLLM.language.llm import LLM, LLMProvider

# OpenAI
openai_llm = LLM.create(provider=LLMProvider.OPENAI, model_name="gpt-4o")

# Anthropic Claude
anthropic_llm = LLM.create(provider=LLMProvider.ANTHROPIC, model_name="claude-3-5-sonnet-20241022")

# Google Gemini
gemini_llm = LLM.create(provider=LLMProvider.GEMINI, model_name="gemini-1.5-pro")

# Cohere
cohere_llm = LLM.create(provider=LLMProvider.COHERE, model_name="command-r-plus")

# OpenRouter (Access to 100+ models)
openrouter_llm = LLM.create(provider=LLMProvider.OPENROUTER, model_name="openai/gpt-4o")

# DeepSeek
deepseek_llm = LLM.create(provider=LLMProvider.DEEPSEEK, model_name="deepseek-chat")

# Ollama (Local models)
ollama_llm = LLM.create(provider=LLMProvider.OLLAMA, model_name="llama2")

Reliable LLM with Failover

from SimplerLLM.language.llm import LLM, LLMProvider
from SimplerLLM.language.llm.reliable import ReliableLLM

# Create primary and secondary LLMs
primary_llm = LLM.create(provider=LLMProvider.OPENAI, model_name="gpt-4o")
secondary_llm = LLM.create(provider=LLMProvider.ANTHROPIC, model_name="claude-3-5-sonnet-20241022")

# Create reliable LLM with automatic failover
reliable_llm = ReliableLLM(primary_llm, secondary_llm)

# If primary fails, automatically uses secondary
response = reliable_llm.generate_response(prompt="Explain machine learning")
print(response)

Structured JSON Output with Pydantic

from pydantic import BaseModel, Field
from SimplerLLM.language.llm import LLM, LLMProvider
from SimplerLLM.language.llm_addons import generate_pydantic_json_model

class MovieRecommendation(BaseModel):
    title: str = Field(description="Movie title")
    genre: str = Field(description="Movie genre")
    year: int = Field(description="Release year")
    rating: float = Field(description="IMDb rating")
    reason: str = Field(description="Why this movie is recommended")

llm = LLM.create(provider=LLMProvider.OPENAI, model_name="gpt-4o")
prompt = "Recommend a great science fiction movie from the 2020s"

recommendation = generate_pydantic_json_model(
    llm_instance=llm,
    prompt=prompt,
    model_class=MovieRecommendation
)

print(f"Title: {recommendation.title}")
print(f"Genre: {recommendation.genre}")
print(f"Year: {recommendation.year}")
print(f"Rating: {recommendation.rating}")
print(f"Reason: {recommendation.reason}")

Reliable JSON Generation

from SimplerLLM.language.llm.reliable import ReliableLLM
from SimplerLLM.language.llm_addons import generate_pydantic_json_model_reliable

# Use reliable LLM with JSON generation
reliable_llm = ReliableLLM(primary_llm, secondary_llm)

recommendation, provider, model_name = generate_pydantic_json_model_reliable(
    reliable_llm=reliable_llm,
    prompt=prompt,
    model_class=MovieRecommendation
)

print(f"Generated by: {provider.name} using {model_name}")
print(f"Title: {recommendation.title}")

Embeddings

All Embedding Providers

from SimplerLLM.language.embeddings import EmbeddingsLLM, EmbeddingsProvider

# OpenAI Embeddings
openai_embeddings = EmbeddingsLLM.create(
    provider=EmbeddingsProvider.OPENAI,
    model_name="text-embedding-3-large"
)

# Voyage AI Embeddings
voyage_embeddings = EmbeddingsLLM.create(
    provider=EmbeddingsProvider.VOYAGE,
    model_name="voyage-3-large"
)

# Cohere Embeddings
cohere_embeddings = EmbeddingsLLM.create(
    provider=EmbeddingsProvider.COHERE,
    model_name="embed-english-v3.0"
)

# Generate embeddings
text = "SimplerLLM makes AI development easier"
embeddings = openai_embeddings.generate_embeddings(text)
print(f"Embedding dimensions: {len(embeddings)}")

Advanced Embedding Features

# Voyage AI with advanced options
voyage_embeddings = EmbeddingsLLM.create(
    provider=EmbeddingsProvider.VOYAGE,
    model_name="voyage-3-large"
)

# Optimize for search queries vs documents
query_embeddings = voyage_embeddings.generate_embeddings(
    user_input="What is machine learning?",
    input_type="query",
    output_dimension=1024
)

document_embeddings = voyage_embeddings.generate_embeddings(
    user_input="Machine learning is a subset of artificial intelligence...",
    input_type="document",
    output_dimension=1024
)

# Cohere with different input types
cohere_embeddings = EmbeddingsLLM.create(
    provider=EmbeddingsProvider.COHERE,
    model_name="embed-english-v3.0"
)

classification_embeddings = cohere_embeddings.generate_embeddings(
    user_input="This is a positive review",
    input_type="classification"
)

Vector Databases

Local Vector Database

from SimplerLLM.vectors.vector_db import VectorDB, VectorProvider
from SimplerLLM.language.embeddings import EmbeddingsLLM, EmbeddingsProvider

# Create embeddings model
embeddings_model = EmbeddingsLLM.create(
    provider=EmbeddingsProvider.OPENAI,
    model_name="text-embedding-3-small"
)

# Create local vector database
vector_db = VectorDB.create(provider=VectorProvider.LOCAL)

# Add documents
documents = [
    "SimplerLLM is a Python library for LLM interactions",
    "Vector databases store high-dimensional embeddings",
    "Semantic search finds similar content based on meaning"
]

for i, doc in enumerate(documents):
    embedding = embeddings_model.generate_embeddings(doc)
    vector_db.add_vector(id=f"doc_{i}", vector=embedding, metadata={"text": doc})

# Search for similar documents
query = "Python library for AI"
query_embedding = embeddings_model.generate_embeddings(query)
results = vector_db.search(query_embedding, top_k=2)

for result in results:
    print(f"Score: {result['score']:.4f}")
    print(f"Text: {result['metadata']['text']}")

Qdrant Vector Database

from SimplerLLM.vectors.vector_db import VectorDB, VectorProvider

# Create Qdrant vector database
qdrant_db = VectorDB.create(
    provider=VectorProvider.QDRANT,
    url="http://localhost:6333",
    collection_name="my_collection"
)

# Same interface as local vector database
embedding = embeddings_model.generate_embeddings("Sample document")
qdrant_db.add_vector(id="doc_1", vector=embedding, metadata={"text": "Sample document"})

Intelligent Routing

from SimplerLLM.language.llm_router.router import LLMRouter
from SimplerLLM.language.llm import LLM, LLMProvider

# Create router with LLM
llm = LLM.create(provider=LLMProvider.OPENAI, model_name="gpt-4o")
router = LLMRouter(llm)

# Add choices
choices = [
    ("Machine Learning Tutorial", {"category": "education", "difficulty": "beginner"}),
    ("Advanced Deep Learning", {"category": "education", "difficulty": "advanced"}),
    ("Python Programming Guide", {"category": "programming", "difficulty": "intermediate"})
]

router.add_choices(choices)

# Route based on input
result = router.route("I want to learn the basics of AI")
if result:
    print(f"Selected: {result.selected_index}")
    print(f"Confidence: {result.confidence_score}")
    print(f"Reasoning: {result.reasoning}")

# Get top 3 matches
top_results = router.route_top_k("programming tutorial", k=3)
for result in top_results:
    choice_content, metadata = router.get_choice(result.selected_index)
    print(f"Choice: {choice_content}")
    print(f"Confidence: {result.confidence_score}")

Advanced Tools

Content Loading

from SimplerLLM.tools.generic_loader import load_content

# Load from various sources
pdf_content = load_content("document.pdf")
web_content = load_content("https://example.com/article")
docx_content = load_content("document.docx")

print(f"PDF content: {pdf_content.content[:100]}...")
print(f"Web content: {web_content.content[:100]}...")

Text Chunking

from SimplerLLM.tools.text_chunker import (
    chunk_by_sentences,
    chunk_by_paragraphs,
    chunk_by_semantics,
    chunk_by_max_chunk_size
)
from SimplerLLM.language.embeddings import EmbeddingsLLM, EmbeddingsProvider

text = "Your long document text here..."

# Sentence-based chunking
sentence_chunks = chunk_by_sentences(text, max_sentences=3)

# Paragraph-based chunking
paragraph_chunks = chunk_by_paragraphs(text, max_paragraphs=2)

# Semantic chunking
embeddings_model = EmbeddingsLLM.create(
    provider=EmbeddingsProvider.OPENAI,
    model_name="text-embedding-3-small"
)
semantic_chunks = chunk_by_semantics(text, embeddings_model, threshold_percentage=80)

# Size-based chunking
size_chunks = chunk_by_max_chunk_size(text, max_chunk_size=1000)

Search Integration

from SimplerLLM.tools.serp import search_with_serper_api

# Search the web
results = search_with_serper_api("latest AI developments", num_results=5)
for result in results:
    print(f"Title: {result['title']}")
    print(f"URL: {result['link']}")
    print(f"Snippet: {result['snippet']}")

Prompt Templates

from SimplerLLM.prompts.prompt_builder import create_prompt_template, create_multi_value_prompts

# Single prompt template
template = create_prompt_template("Write a {style} article about {topic}")
template.assign_params(style="technical", topic="machine learning")
print(template.content)

# Multi-value prompts
multi_template = create_multi_value_prompts(
    "Hello {name}, your meeting is on {date} about {topic}"
)

params_list = [
    {"name": "Alice", "date": "Monday", "topic": "AI"},
    {"name": "Bob", "date": "Tuesday", "topic": "ML"},
]

prompts = multi_template.generate_prompts(params_list)
for prompt in prompts:
    print(prompt)

Configuration

Environment Variables

Create a .env file in your project root:

# LLM Providers
OPENAI_API_KEY=your_openai_api_key
ANTHROPIC_API_KEY=your_anthropic_api_key
GEMINI_API_KEY=your_gemini_api_key
COHERE_API_KEY=your_cohere_api_key
OPENROUTER_API_KEY=your_openrouter_api_key
OPENROUTER_SITE_URL=your_site_url  # Optional
OPENROUTER_SITE_NAME=your_site_name  # Optional

# Embeddings
VOYAGE_API_KEY=your_voyage_api_key

# Tools
RAPIDAPI_API_KEY=your_rapidapi_key
SERPER_API_KEY=your_serper_api_key
VALUE_SERP_API_KEY=your_value_serp_api_key
STABILITY_API_KEY=your_stability_api_key

Async Support

Most functions support async operations:

import asyncio
from SimplerLLM.language.llm import LLM, LLMProvider
from SimplerLLM.language.llm_addons import generate_pydantic_json_model_async

async def main():
    llm = LLM.create(provider=LLMProvider.OPENAI, model_name="gpt-4o")
    
    # Async response generation
    response = await llm.generate_response_async(prompt="What is async programming?")
    print(response)
    
    # Async JSON generation
    result = await generate_pydantic_json_model_async(
        llm_instance=llm,
        prompt="Generate a product review",
        model_class=MovieRecommendation
    )
    print(result)

asyncio.run(main())

Error Handling and Best Practices

Robust Error Handling

from SimplerLLM.language.llm import LLM, LLMProvider
from SimplerLLM.language.llm_addons import generate_pydantic_json_model

try:
    llm = LLM.create(provider=LLMProvider.OPENAI, model_name="gpt-4o")
    
    result = generate_pydantic_json_model(
        llm_instance=llm,
        prompt="Generate a summary",
        model_class=MovieRecommendation,
        max_retries=3
    )
    
    if isinstance(result, str):  # Error case
        print(f"Error: {result}")
    else:
        print(f"Success: {result}")
        
except Exception as e:
    print(f"Exception: {e}")

Cost Calculation

from SimplerLLM.language.llm_addons import calculate_text_generation_costs

input_text = "Your input prompt here"
output_text = "Generated response here"

cost_info = calculate_text_generation_costs(
    input=input_text,
    response=output_text,
    cost_per_million_input_tokens=2.50,  # Example: GPT-4 pricing
    cost_per_million_output_tokens=10.00,
    approximate=True  # Use approximate token counting
)

print(f"Input tokens: {cost_info['input_tokens']}")
print(f"Output tokens: {cost_info['output_tokens']}")
print(f"Total cost: ${cost_info['total_cost']:.6f}")

License

This project is licensed under the MIT License - see the LICENSE file for details.

Support


SimplerLLM - Making AI development simpler, one line of code at a time.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

simplerllm-0.3.1.22.tar.gz (176.5 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

simplerllm-0.3.1.22-py3-none-any.whl (148.4 kB view details)

Uploaded Python 3

File details

Details for the file simplerllm-0.3.1.22.tar.gz.

File metadata

  • Download URL: simplerllm-0.3.1.22.tar.gz
  • Upload date:
  • Size: 176.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for simplerllm-0.3.1.22.tar.gz
Algorithm Hash digest
SHA256 2bdc1be114c6ae6b2b2fddba501ffe083ec296b645cc9c649a0fe2cd3acf9d0b
MD5 c08c01be4045a167d28be3b62ee9357a
BLAKE2b-256 a86f9de67f1df1a5dbd0cdb5a137b69206279f9c97f4358f3214bde8d6e85c0a

See more details on using hashes here.

File details

Details for the file simplerllm-0.3.1.22-py3-none-any.whl.

File metadata

  • Download URL: simplerllm-0.3.1.22-py3-none-any.whl
  • Upload date:
  • Size: 148.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for simplerllm-0.3.1.22-py3-none-any.whl
Algorithm Hash digest
SHA256 d637c8e608dc4c24ab7691499155fc6be47833521120673613f10d6adac0cfba
MD5 5aa3f4034226f41658484f2e3eee01a4
BLAKE2b-256 76d3d4ec875a3d0de4fdf6a1aae25e8baa35393ac3301862485aa0a31380712a

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page