Tokenize SMILES with substructure units
Project description
SMILES Pair Encoding (SmilesPE).
SMILES Pair Encoding (SmilesPE) trains a substructure tokenizer from a large set of SMILES strings (e.g., ChEMBL) based on byte-pair-encoding (BPE).
Overview
Installation
pip install SmilesPE
Usage Instructions
Basic Tokenizers
- Atom-level Tokenizer
from SmilesPE.pretokenizer import atomwise_tokenizer
smi = 'CC[N+](C)(C)Cc1ccccc1Br'
toks = atomwise_tokenizer(smi)
print(toks)
['C', 'C', '[N+]', '(', 'C', ')', '(', 'C', ')', 'C', 'c', '1', 'c', 'c', 'c', 'c', 'c', '1', 'Br']
- K-mer Tokenzier
from SmilesPE.pretokenizer import kmer_tokenizer
smi = 'CC[N+](C)(C)Cc1ccccc1Br'
toks = kmer_tokenizer(smi, ngram=4)
print(toks)
['CC[N+](', 'C[N+](C', '[N+](C)', '(C)(', 'C)(C', ')(C)', '(C)C', 'C)Cc', ')Cc1', 'Cc1c', 'c1cc', '1ccc', 'cccc', 'cccc', 'ccc1', 'cc1Br']
The basic tokenizers are also compatible with SELFIES and DeepSMILES. Package installations are required.
Example of SELFIES
import selfies
smi = 'CC[N+](C)(C)Cc1ccccc1Br'
sel = selfies.encoder(smi)
print(f'SELFIES string: {sel}')
> >> SELFIES string: [C][C][N+][Branch1_2][epsilon][C][Branch1_3][epsilon][C][C][c][c][c][c][c][c][Ring1][Branch1_1][Br]
toks = atomwise_tokenizer(sel)
print(toks)
> >> ['[C]', '[C]', '[N+]', '[Branch1_2]', '[epsilon]', '[C]', '[Branch1_3]', '[epsilon]', '[C]', '[C]', '[c]', '[c]', '[c]', '[c]', '[c]', '[c]', '[Ring1]', '[Branch1_1]', '[Br]']
toks = kmer_tokenizer(sel, ngram=4)
print(toks)
>>> ['[C][C][N+][Branch1_2]', '[C][N+][Branch1_2][epsilon]', '[N+][Branch1_2][epsilon][C]', '[Branch1_2][epsilon][C][Branch1_3]', '[epsilon][C][Branch1_3][epsilon]', '[C][Branch1_3][epsilon][C]', '[Branch1_3][epsilon][C][C]', '[epsilon][C][C][c]', '[C][C][c][c]', '[C][c][c][c]', '[c][c][c][c]', '[c][c][c][c]', '[c][c][c][c]', '[c][c][c][Ring1]', '[c][c][Ring1][Branch1_1]', '[c][Ring1][Branch1_1][Br]']
Example of DeepSMILES
import deepsmiles
converter = deepsmiles.Converter(rings=True, branches=True)
smi = 'CC[N+](C)(C)Cc1ccccc1Br'
deepsmi = converter.encode(smi)
print(f'DeepSMILES string: {deepsmi}')> >> DeepSMILES string: CC[N+]C)C)Ccccccc6Br
toks = atomwise_tokenizer(deepsmi)
print(toks)
>>> ['C', 'C', '[N+]', 'C', ')', 'C', ')', 'C', 'c', 'c', 'c', 'c', 'c', 'c', '6', 'Br']
toks = kmer_tokenizer(deepsmi, ngram=4)
print(toks)
>>> ['CC[N+]C', 'C[N+]C)', '[N+]C)C', 'C)C)', ')C)C', 'C)Cc', ')Ccc', 'Cccc', 'cccc', 'cccc', 'cccc', 'ccc6', 'cc6Br']
Use the Pre-trained SmilesPE Tokenizer
Dowbload 'SPE_ChEMBL.txt'.
import codecs
from SmilesPE.tokenizer import *
spe_vob= codecs.open('../SPE_ChEMBL.txt')
spe = SPE_Tokenizer(spe_vob)
smi = 'CC[N+](C)(C)Cc1ccccc1Br'
spe.tokenize(smi)
>>> 'CC [N+](C) (C)C c1ccccc1 Br'
Train a SmilesPE Tokenizer with a Custom Dataset
See train_SPE.ipynb for an example of training A SPE tokenizer on ChEMBL data.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file SmilesPE-0.0.3.tar.gz.
File metadata
- Download URL: SmilesPE-0.0.3.tar.gz
- Upload date:
- Size: 15.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.6.7
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
7ceebc7d314e456a08f77d45f08fe4b638886901c0eac50f0cdb005b9f0912bc
|
|
| MD5 |
ac151f898f038aab0f6becc2f620e78d
|
|
| BLAKE2b-256 |
5e5ca638fd96cdf4499eaed76d5dbcec734d98c4ddaf2a8f9e13e44e5151fa29
|
File details
Details for the file SmilesPE-0.0.3-py3-none-any.whl.
File metadata
- Download URL: SmilesPE-0.0.3-py3-none-any.whl
- Upload date:
- Size: 15.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.6.7
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
9f74279daa14945859546fb2de11c208b5116927ce5fe03b3cf46bcba96f5e58
|
|
| MD5 |
d9faf4f4f324a7018a099d8f9a933d6c
|
|
| BLAKE2b-256 |
6df9273f54d9d4b42779926291c82a5b3ffea30cff2492ebbe4ce08dccdcc949
|