Skip to main content

Package for Sparse optimization

Project description

An sparse opyimization toolbox contains test data generation and network reasoning

Test Data Generation

Import

from sparsetools import matCreater

Data generation

matCreater.matCreater(tfLen=10, sampleNums=200, geneNums=2000, normalLoc=0, normalScale=0.1)
Parameter Type Explanation
tfLen int The numbers of transcribe factors
sampleNums int The numbers of transcribe samples
geneNums int The numbers of target genes
normalLoc float: recommond use 0 Mean value of Gaussian noise
normalScale float Variance of Gaussian noise

Return:

Parameter Type Shapes Explanation
W_d np.array (tfLen, sampleNums) Over complete dictionary
zNetwork np.array (geneNums, tfLen) Sparse matrix
xTargetGene np.array (geneNums,sampleNums) Target

Network reasoning

from sparsetools import Optimization
Optimization.voting(expre, tf_names, gene_names)
Parameter Type Explanation
expre np.array The expresion matrix of genes
tf_names np.array Names of tf
gene_names np.array Name of all genes(including TF)

Return:

The moderation network result matrix of the voting algorithm, while the results of the independent algorithm are named with the algorithm name and stored locally.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Sparse-Optimization-Toolbox-0.1.0.tar.gz (2.9 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file Sparse-Optimization-Toolbox-0.1.0.tar.gz.

File metadata

  • Download URL: Sparse-Optimization-Toolbox-0.1.0.tar.gz
  • Upload date:
  • Size: 2.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.12

File hashes

Hashes for Sparse-Optimization-Toolbox-0.1.0.tar.gz
Algorithm Hash digest
SHA256 cd9dba210dbdb9af13cf02ce769899d6bb7e36f4f43da82cfa6d3d79ffbcd159
MD5 d49a8d0218b1b6c1678c89df9da875a9
BLAKE2b-256 dae9e18a3ab5c3e814f531636375a1afc234c1ae4e9571231345e7d8c4f81f31

See more details on using hashes here.

File details

Details for the file Sparse_Optimization_Toolbox-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: Sparse_Optimization_Toolbox-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 2.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.12

File hashes

Hashes for Sparse_Optimization_Toolbox-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 bc24a0c78b4b91dee49b1693fc70d2c405003ce64e5016aebe0e284bc04519d6
MD5 e65a46f1cd230f67acc8565d2f425005
BLAKE2b-256 100d0c41f50a5327f565ce92d3c6b4fccf88e695f4ca3b90ecf03422d20be65d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page