Skip to main content

A library for the prediction and comparison of RNA secondary structures.

Project description

GitHub release Build Status Github All Releases Conda Conda Downloads AUR

ViennaRNA Package

A C code library and several stand-alone programs for the prediction and comparison of RNA secondary structures.

Amongst other things, our implementations allow you to:

  • predict minimum free energy secondary structures
  • calculate the partition function for the ensemble of structures
  • compute various equilibrium probabilities
  • calculate suboptimal structures in a given energy range
  • compute local structures in long sequences
  • predict consensus secondary structures from a multiple sequence alignment
  • predict melting curves
  • search for sequences folding into a given structure
  • compare two secondary structures
  • predict interactions between multiple RNA molecules

The package includes Perl 5 and Python modules that give access to almost all functions of the C library from within the respective scripting languages.

There is also a set of programs for analyzing sequence and distance data using split decomposition, statistical geometry, and cluster methods. They are not maintained any more and not built by default.

The code very rarely uses static arrays, and all programs should work for sequences up to a length of 32,700 (if you have huge amounts of memory that is).

See the NEWS and CHANGELOG.md files for changes between versions.


Availability

The most recent source code should always be available through the official ViennaRNA website and through github.


Documentation

Executable programs shipped with the ViennaRNA Package are documented by corresponding man pages, use e.g.:

man RNAfold

in a UNIX terminal to obtain the documentation for the RNAfold program. HTML translations of all man pages can be found at our official homepage.

We maintain a reference manual describing the RNAlib API that is automatically generated with doxygen. The HTML version of this reference manual is available at our official website and at ReadTheDocs.


Installation

For best portability the ViennaRNA package uses the GNU autoconf and automake tools. The instructions below are for installing the ViennaRNA package from source.

See the file INSTALL for a more detailed description of the build and installation process.

Quick Start

Usually you'll simply unpack the distribution tarball, configure and make:

tar -zxvf ViennaRNA-2.7.2.tar.gz
cd ViennaRNA-2.7.2
./configure
make
sudo make install

User-dir Installation

If you do not have root privileges on your computer, you might want to install the ViennaRNA Package to a location where you actually have write access to. Use the --prefix option to set the installation prefix like so:

./configure --prefix=/home/username/ViennaRNA
make install

This will install everything into a new directory ViennaRNA directly into the home directory of user username.

Note, that the actual install destination paths are listed at the end of the ./configure output.

Install from git repository

If you attempt to build and install from our git repository, you need to perform some additional steps before actually running the ./configure script:

  1. Unpack the libsvm archive to allow for SVM Z-score regression with the program RNALfold:
cd src
tar -xzf libsvm-3.35.tar.gz
cd ..
  1. Unpack the dlib archive to allow for concentration dependency computations with the program RNAmultifold:
cd src
tar -xjf dlib-20.0.tar.bz2
cd ..
  1. Install the autotools toolchain and the additional maintainer tools gengetopt, help2man,flex,xxd, and swig if necessary. For instance, in Debian based distributions, the following packages need to be installed:

    • build-essential (basic build tools, such as compiler, linker, etc.)
    • autoconf, automake, libtool, pkg-config (autotools toolchain)
    • gengetopt (to generate command line parameter parsers)
    • help2man (to generate the man pages)
    • bison and `flex`` (to generate sources for RNAforester)
    • vim-common (for the xxd program)
    • swig (to generate the scripting language interfaces)
    • liblapacke (for RNAxplorer)
    • liblapack (for RNAxplorer)
    • A fortran compiler, e.g. gfortran (for RNAxplorer)
  2. Finally, run the autoconf/automake toolchain:

autoreconf -i

After that, you can compile and install the ViennaRNA Package as if obtained from the distribution tarball.

Binary packages

Binary packages for several Linux-based platforms, Microsoft Windows, and Mac OS X are available at our official website.

Bioconda

Installation is also possible through bioconda. After successfully setting up the bioconda channels

conda config --add channels defaults
conda config --add channels bioconda
conda config --add channels conda-forge
conda config --set channel_priority strict

you can install the viennarna bioconda package through

conda install viennarna

Python interface only

The Python 3 interface for the ViennaRNA Package library is available at PyPI and can be installed independently using Python's pip:

python -m pip install viennarna

Building a Python 3 sdist or wheel package

Our source tree allows for building/installing the Python 3 interface separately. For that, we provide the necessary packaging files pyproject.toml, setup.cfg, setup.py and MANIFEST.in.

These files are created by our autoconf toolchain after a run of ./configure. Particular default compile-time features may be (de-)activated by setting the corresponding boolean flags in setup.cfg. See below for additional steps when building the Python interface from a clean git clone.

Running

python -m build

will then create a source distribution (sdist) and a binary package (wheel) in the dist/ directory. These files can be easily installed via Python's pip.

Howto prepare the Python 3 sdist/wheel build from git repository

If you are about to create the Python interface from a fresh clone of our git repository, you require additional steps after running ./configure as described above. In particular, some autogenerated static files that are compiled into RNAlib must be generated. To do so, run

cd src/ViennaRNA/static
make
cd ../../..

Additionally, if building the reference manual is not explicitly turned off, the Python interface requires docstrings to be generated. They are taken from the doxygen xml output which can be created by

cd doc
make refman-html
cd ..

Finally, the swig wrapper must be build using

cd interfaces/Python
make RNA/RNA.py
cd ../..

After these steps, the Python sdist and wheel packages can be build as usual.


References

If you use our software package, you may want to cite the follwing publications:

  • R. Lorenz et al. (2011), "ViennaRNA Package 2.0", Algorithms for Molecular Biology, 6:26

  • I.L. Hofacker (1994), "Fast folding and comparison of RNA secondary structures", Monatshefte fuer Chemie, Volume 125, Issue 2, pp 167-188

Note, that the individual executable programs state their own list of references in the corresponding man-pages.


License

Please read the copyright notice in the file COPYING!

If you're a commercial user and find these programs useful, please consider supporting further developments with a donation.


Contact

We need your feedback! Send your comments, suggestions, and questions to rna@tbi.univie.ac.at

Ivo Hofacker, Spring 2006

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

viennarna-2.7.2.tar.gz (6.3 MB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

viennarna-2.7.2-cp314-cp314-win_amd64.whl (2.1 MB view details)

Uploaded CPython 3.14Windows x86-64

viennarna-2.7.2-cp314-cp314-musllinux_1_2_x86_64.whl (14.2 MB view details)

Uploaded CPython 3.14musllinux: musl 1.2+ x86-64

viennarna-2.7.2-cp314-cp314-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (13.4 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

viennarna-2.7.2-cp314-cp314-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.14macOS 11.0+ ARM64

viennarna-2.7.2-cp314-cp314-macosx_10_15_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.14macOS 10.15+ x86-64

viennarna-2.7.2-cp313-cp313-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.13Windows x86-64

viennarna-2.7.2-cp313-cp313-musllinux_1_2_x86_64.whl (14.2 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ x86-64

viennarna-2.7.2-cp313-cp313-musllinux_1_2_aarch64.whl (13.0 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ ARM64

viennarna-2.7.2-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (13.4 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

viennarna-2.7.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.0 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ ARM64

viennarna-2.7.2-cp313-cp313-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

viennarna-2.7.2-cp313-cp313-macosx_10_14_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.13macOS 10.14+ x86-64

viennarna-2.7.2-cp312-cp312-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.12Windows x86-64

viennarna-2.7.2-cp312-cp312-musllinux_1_2_x86_64.whl (14.2 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ x86-64

viennarna-2.7.2-cp312-cp312-musllinux_1_2_aarch64.whl (13.0 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ ARM64

viennarna-2.7.2-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (13.4 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

viennarna-2.7.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.0 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARM64

viennarna-2.7.2-cp312-cp312-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

viennarna-2.7.2-cp312-cp312-macosx_10_14_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.12macOS 10.14+ x86-64

viennarna-2.7.2-cp311-cp311-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.11Windows x86-64

viennarna-2.7.2-cp311-cp311-musllinux_1_2_x86_64.whl (14.2 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ x86-64

viennarna-2.7.2-cp311-cp311-musllinux_1_2_aarch64.whl (13.0 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ ARM64

viennarna-2.7.2-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (13.4 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

viennarna-2.7.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (12.9 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

viennarna-2.7.2-cp311-cp311-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

viennarna-2.7.2-cp311-cp311-macosx_10_14_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.11macOS 10.14+ x86-64

viennarna-2.7.2-cp310-cp310-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.10Windows x86-64

viennarna-2.7.2-cp310-cp310-musllinux_1_2_x86_64.whl (14.1 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ x86-64

viennarna-2.7.2-cp310-cp310-musllinux_1_2_aarch64.whl (12.9 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ ARM64

viennarna-2.7.2-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (13.3 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

viennarna-2.7.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (12.9 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

viennarna-2.7.2-cp310-cp310-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

viennarna-2.7.2-cp310-cp310-macosx_10_14_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.10macOS 10.14+ x86-64

File details

Details for the file viennarna-2.7.2.tar.gz.

File metadata

  • Download URL: viennarna-2.7.2.tar.gz
  • Upload date:
  • Size: 6.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for viennarna-2.7.2.tar.gz
Algorithm Hash digest
SHA256 44682b8a5f077faf32bf5d0353a232c74091ea47255a76a56495f9fb02e1e872
MD5 008521a2dce11aaa27aa5a0ab9753ec2
BLAKE2b-256 d07a2165d7d54234efc63a929a33d8a746cc23c3834747d195bd4d1b56cd1124

See more details on using hashes here.

File details

Details for the file viennarna-2.7.2-cp314-cp314-win_amd64.whl.

File metadata

  • Download URL: viennarna-2.7.2-cp314-cp314-win_amd64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.14, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for viennarna-2.7.2-cp314-cp314-win_amd64.whl
Algorithm Hash digest
SHA256 7bb950ba5c6bccdb07f058708c7cc4508e10c2e452ee2169f56fea421b40d268
MD5 f7ed95df46368d1e0b349189d0ba2593
BLAKE2b-256 76b757c0991edc7e7cd3fc4b514496cd87a6338229028c12bb062cd5b58d70f7

See more details on using hashes here.

File details

Details for the file viennarna-2.7.2-cp314-cp314-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for viennarna-2.7.2-cp314-cp314-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 e0e04ffa2c10d4c435e1b91e30537676670b50292c9ed0cf2ba67629677c9b2c
MD5 af92fd7961c2db6484aac62f48fe3464
BLAKE2b-256 bb2c4426855bee29218525d5789d923574709cb73bfac6e2d70678e13e22cd0b

See more details on using hashes here.

File details

Details for the file viennarna-2.7.2-cp314-cp314-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for viennarna-2.7.2-cp314-cp314-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 4eafcc3be39666b4314fc9fe0eacdf7aa52527b3702b6c6df9b676dfbcf36d14
MD5 6b6c811383eb5cff3dc7bd795a35056e
BLAKE2b-256 78b7b45c72f99a5f5acece93c87dff4ff36ca9c1f55a596443180ab2556d202f

See more details on using hashes here.

File details

Details for the file viennarna-2.7.2-cp314-cp314-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for viennarna-2.7.2-cp314-cp314-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e4a7c5535ad98479db455329d6957c67b147a5c18e8f1998ece074cc49a1dc31
MD5 e95a5ced79e5be4ef96fe94db5e0ed6d
BLAKE2b-256 4336e04bcb7ad8d986073a6b75610d75940c71111af3b3f026365a72cae57ff1

See more details on using hashes here.

File details

Details for the file viennarna-2.7.2-cp314-cp314-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for viennarna-2.7.2-cp314-cp314-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 7a64704fd6a5356c966f1a05928c77935ebb5aca56c0bc9159a24300a9ae5009
MD5 2f42203242a72be6b404995d42ea3cd9
BLAKE2b-256 837ae3f474cd8ca60e3f90a78bd81e08cd5d0e3e75df94395ff8463727aacac4

See more details on using hashes here.

File details

Details for the file viennarna-2.7.2-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: viennarna-2.7.2-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for viennarna-2.7.2-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 ad3a8c8a4437e9cd3381d9b1c283f8831018369c8a36b892fd7c749080523023
MD5 bebaa704dd23e23696c6039ff1dffdda
BLAKE2b-256 a023e41a7dfca0ce615b4e63fd7c3dccac89c34f3039fbfe6bd6e7b89b4a971e

See more details on using hashes here.

File details

Details for the file viennarna-2.7.2-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for viennarna-2.7.2-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 7b4adbc5b9ae29744937893fc805a11617fc429ef6410bdb544fe467abd35e9f
MD5 3391f73ed24d40a687cda0fff9832d75
BLAKE2b-256 db28ba6c3d42b34a41ff18132207ac323f225f800ffb8174c665411d1e025a03

See more details on using hashes here.

File details

Details for the file viennarna-2.7.2-cp313-cp313-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for viennarna-2.7.2-cp313-cp313-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 ab8e80d0254f3c53fdd80f16ac8765dd8976bef0dd08b534cc7337c6d1d82117
MD5 8f5f5f3f94d67d3fac05887099702980
BLAKE2b-256 625a951c0a3a40c690e127c360bb6752c13e87bfbe66f98aab0fa822ab237ed5

See more details on using hashes here.

File details

Details for the file viennarna-2.7.2-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for viennarna-2.7.2-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 44a4e292f397393be03d7902da9426128fe9df77f29d0bfaa946a79d01f8545e
MD5 8a05511d2c65dde8741e3340e027f01c
BLAKE2b-256 f333806495477b75777679d1caad34bc6819cc668c383e1f7b4090026b4fa9bc

See more details on using hashes here.

File details

Details for the file viennarna-2.7.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for viennarna-2.7.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6721f91068d48cc3a5422188cc41004662142bc4833f362ff6c4906b50bf5738
MD5 6b075db3fa6d60ba487278c2be5f645b
BLAKE2b-256 b5885e2be1e348212c9a65f5385a3084fbdba58e1f65e44f4b0c053fc65bd44f

See more details on using hashes here.

File details

Details for the file viennarna-2.7.2-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for viennarna-2.7.2-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f1719c55fc2502d3aa69d3a853f0427415698ebdc55112ea7039ebb38ae18478
MD5 a54c9894f2a1926936aec0c85320beec
BLAKE2b-256 9cb3f2840df26f7da356babd7b99fbe954c6fed9cd0cb1f5dd41e76d54e4be0b

See more details on using hashes here.

File details

Details for the file viennarna-2.7.2-cp313-cp313-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for viennarna-2.7.2-cp313-cp313-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 e1b6dd2359d00d56a8f53cb38121ccd7fd565ce2d90bd66d11d029af807345f7
MD5 1d17e0867dbde7fe7e34163f9f9ed69e
BLAKE2b-256 6802342d3dadb343dd79960176731d4beedef1b6702d603f976c92a70a784e28

See more details on using hashes here.

File details

Details for the file viennarna-2.7.2-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: viennarna-2.7.2-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for viennarna-2.7.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 68b0803568549256dadf7383e02ee98973433e6d4c59abebb6a27f278ba77c02
MD5 eb465fd92866166257ddbafb3f4b3962
BLAKE2b-256 1cef48c46b000caf747fc03866c00fbc14fff89e833b614f2b261487b7260440

See more details on using hashes here.

File details

Details for the file viennarna-2.7.2-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for viennarna-2.7.2-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 24a3aa924ddd318c8c240ced3dfcc5affd324f184eb4a137dd35e96d2c3bcacc
MD5 0faea6cea8511cfeded57530a4ab17f8
BLAKE2b-256 fe9cfa4391936abf0624cafa4ad72c38d5d7462cc8d6bd6968709758f31dca08

See more details on using hashes here.

File details

Details for the file viennarna-2.7.2-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for viennarna-2.7.2-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 220977fc95bf9e72173300afc8d2f15afcd4679582a420d90fb4a7c83db4b118
MD5 e5075bb6c4387a9baa9f180b345dcb86
BLAKE2b-256 a27390f8f323337a88c27f7fd28d64e5b93f520a1704e9ff0489774aedc38059

See more details on using hashes here.

File details

Details for the file viennarna-2.7.2-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for viennarna-2.7.2-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 1e4132cbb35dc258cc97f2e1b7b83bd11712d539c4757dfb78445c38041e439c
MD5 9b435ed9e950c674fa509d8f532d089d
BLAKE2b-256 0dbac2b939614c4e48b7e387db7549eaf2b03d682e030eee1b93679854bc0bd1

See more details on using hashes here.

File details

Details for the file viennarna-2.7.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for viennarna-2.7.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4413387dc286d4d5a778afcc09cee17d60c7f38c6991451da7566ad21612ae38
MD5 49796973d3d35d2178ab9136f1074045
BLAKE2b-256 79934128120d867a7bda53e37fffac58035209e14ee36568a0d44565b42db7b8

See more details on using hashes here.

File details

Details for the file viennarna-2.7.2-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for viennarna-2.7.2-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 306efabeec8e5608351f5d039d4ce0c171d0bd216086eaf255cdb51d8c827640
MD5 afe61f39d8e3d906f0f9203866f7b6cb
BLAKE2b-256 8c114f381962409a7f63730d4877c09de75e31dd37054250e89870b71e685402

See more details on using hashes here.

File details

Details for the file viennarna-2.7.2-cp312-cp312-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for viennarna-2.7.2-cp312-cp312-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 7a0b6b488417d6dd17ae4494d7b9b77a7f5713516325dfa2e6bb5eb29362a7b1
MD5 8b4eebfce3cfaec6c9abf1cf7321732f
BLAKE2b-256 e39e15d00b8a67e0176ff35fc1bdadac8d051062fd32d431be711309ad807af1

See more details on using hashes here.

File details

Details for the file viennarna-2.7.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: viennarna-2.7.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for viennarna-2.7.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 b66567c43c1f3b6795a1c7ab46b7315f56bfed4097827d0df80e03ff5b8f0e29
MD5 53b42204f22bb270ea157317c38a2312
BLAKE2b-256 93a4774155a4bf659473206c675eed666031500e05a40ebf52a7590243085ed3

See more details on using hashes here.

File details

Details for the file viennarna-2.7.2-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for viennarna-2.7.2-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 671403daf511eb1bab58a9a7055a1c6786b3380572be9f9599d193fd3525da66
MD5 4e87db0329e7918665bbe5b8688568c1
BLAKE2b-256 50bc853723554c5f9f73a90bbfad86234ed5838462fd0a170fff711c3189c1ce

See more details on using hashes here.

File details

Details for the file viennarna-2.7.2-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for viennarna-2.7.2-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 87f6f552709ed4a26cec12bf452dc9a266642e300d62067dfd8a838619627d4f
MD5 1b17787a458216b4d8e092da20cef262
BLAKE2b-256 29081109956b7c50dfa2df3fbd020655244918b407a6bed80a5de5f2472b52cc

See more details on using hashes here.

File details

Details for the file viennarna-2.7.2-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for viennarna-2.7.2-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 c85a09270bda4ddb4aa07d2d373e135c4efac94253b121601bb733cfda22dc79
MD5 c10645697ff796f747e70591807040b3
BLAKE2b-256 1b81714e66e180a07717c1259bd79e9ca5f724d99fc62575f1b86f153aed7332

See more details on using hashes here.

File details

Details for the file viennarna-2.7.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for viennarna-2.7.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 532bd4d5fd1f2ef2a56b2902542754cd4623bb8945c6deaa15520cc26b08dd83
MD5 3af6f30b2299c15a8efec062d6159739
BLAKE2b-256 fe38af0813badfc843babe9e6c6cbecb64b6e5d7a5eb786177e878f7b73768a5

See more details on using hashes here.

File details

Details for the file viennarna-2.7.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for viennarna-2.7.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f7859efd3724fd5a9189dfaf4ee0b2946fc9120363f63ba1dff079dedb5e9ff4
MD5 6546ce528f21f1849cab3c4e5e25f4df
BLAKE2b-256 d1f9e23b1e38c27b0df2b0327a57e2064caf55ee3880262998348ae6431e65e4

See more details on using hashes here.

File details

Details for the file viennarna-2.7.2-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for viennarna-2.7.2-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 1ef034bbdbf1071cb6d7d4821544b046c2434e414e47bc9fd747ac78ad2d40bd
MD5 0c8bf5659264b5dd30bae2844918040a
BLAKE2b-256 a521ed66fcb3e1aab15db124c396637a17021f983908a6489a0ae420fa9bfeba

See more details on using hashes here.

File details

Details for the file viennarna-2.7.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: viennarna-2.7.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for viennarna-2.7.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 48dbefd070160f7f197a98e041397d52361ef33584f7582e9cb9cfee898e1538
MD5 9ac8a7e3386351164129178c624cc587
BLAKE2b-256 7f6ef222387d88e0dc0fc0c53ec24ea69a42dd1817fc190247cb76d0472c8e5d

See more details on using hashes here.

File details

Details for the file viennarna-2.7.2-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for viennarna-2.7.2-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 25a89156203a4205b993a27ed6a72e6d84fa3b1ddaafba337ff38b2f590d9eef
MD5 d5a3f92e00ac23c72835c4e1a5eba7a3
BLAKE2b-256 13567cb8d9ab7ceb88f0890489b1018af783b23a754f3b20e863fa13f1ec5823

See more details on using hashes here.

File details

Details for the file viennarna-2.7.2-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for viennarna-2.7.2-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 f7448f7198a7aec7b9c0e080c7a3a02085fe4f67ed8b4611bafa633ce96ab2e1
MD5 2ad5151fcdc1cb5cf8fbffb4a54543ff
BLAKE2b-256 6b3911623379f6377b2c7e00e40cb42d98963dadd0dca2606f9e9c244e659433

See more details on using hashes here.

File details

Details for the file viennarna-2.7.2-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for viennarna-2.7.2-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 6ede0c4d7f76df2bbac812845a923504a8fcc7b126bede15b325ddeb109cf9eb
MD5 5cba2ecab4d177d298f2d347e6f5ef8e
BLAKE2b-256 d99fd74294886183547a752bd9485c188ec8c27797a6a4972c2525f93f1c8f92

See more details on using hashes here.

File details

Details for the file viennarna-2.7.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for viennarna-2.7.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1a997a6a2028069a29d465a54fbc0fd4280fd19c77ceb08fc7f6c4ba482f51f3
MD5 3c22e13109185679583bce71284933ad
BLAKE2b-256 6828f38a73fcf5bad9d569c93a062b94e0787403fb556a718459ef16b3761813

See more details on using hashes here.

File details

Details for the file viennarna-2.7.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for viennarna-2.7.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3e08ea622fc53697d98c7879a713451faf1e2fda8a442d584f1852b6b109fda0
MD5 57978c995fce22562775414c5f816e1f
BLAKE2b-256 ed5771777220503e901c953ea5d10bb8384ba10459ae6fa4588a63b00f228797

See more details on using hashes here.

File details

Details for the file viennarna-2.7.2-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for viennarna-2.7.2-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 0b6a72f5a07d66be18215ed334b176c299eb8bbd34ea602cb89861f03105bd2f
MD5 76c5a177858f256809eb426b77ef68ca
BLAKE2b-256 7b58dba6ecb3af4b2bf014da26c2daab1512d830f1ab7a1a20a479dc95b487ac

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page