Skip to main content

No project description provided

Project description

Python 3.6 License

Access Face Vision

Face detection and recognition Application.

With pip

  • Installation
pip install access-face-vision
  • Training/Creating FaceGroup
python -m access_face_vision --mode train --img_dir samples/celebrities --face_group celebrities

# Directory structure
# **/Images/
#          A/
#           A_K_01.jpg
#           A_K_02.jpg
#          B/
#           B_S_01.jpg
#           B_S_02.jpg
  • Running Inferences
# Live video feed
>python -m access_face_vision --mode live-video --camera-index 0 --camera_wait 30 --face_group celebrities

# server mode
python -m access_face_vision --mode server

Use access-client to make requests to this server

Docker image

  • Docker Image build
docker build -t access_face_vision:latest .
  • Docker run
# we will use it as root directory for access_face_vision application
mkdir -p accessai/afv

# Start server
docker run -v $(pwd)/afv:/accessai/afv python -m access_face_vision --mode server

# Start camera feed processor
docker run -v $(pwd)/afv:/accessai/af v python -m access_face_vision --mode server

Contribution

Contributions are welcome. Feel free to raise PRs! with any improvements.

Credit

Face Encoder model: https://github.com/nyoki-mtl/keras-facenet

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

access-face-vision-0.0.3.tar.gz (19.1 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page