Skip to main content

LLM agent framework with structured I/O

Project description

acorn 🌰

LLM agent framework with structured I/O, heavily influenced by DSPy.

Build AI agents with type-safe inputs and outputs, automatic tool calling, and powerful agentic loops.

Tests Coverage Python License


✨ Features

  • 🎯 Structured I/O - Pydantic models for inputs and outputs
  • 🤖 Agentic Loops - Multi-turn execution with tool calling
  • 🛠️ Auto Tool Schemas - Generate from type hints and docstrings
  • 🔄 Dynamic Tools - Add/remove tools during execution
  • Parse Error Recovery - Automatic retry on validation failures
  • 📊 Step Callbacks - Full control over loop behavior
  • 🔌 LiteLLM Integration - Works with any LLM provider
  • 🌊 Streaming Responses - Real-time output with partial structured updates
  • 💾 Provider Caching - Reduce latency and cost with prompt caching

🚀 Quick Start

Installation

pip install acorn

Set your API key:

# For Anthropic Claude (default)
export ANTHROPIC_API_KEY="your-key-here"

# Or for OpenAI
export OPENAI_API_KEY="your-key-here"

# Or any other LiteLLM-supported provider

Single-Turn Example

from pydantic import BaseModel, Field
from acorn import Module

class Input(BaseModel):
    text: str = Field(description="The text to summarize")
    max_words: int = Field(default=100, description="Maximum words in summary")

class Output(BaseModel):
    summary: str = Field(description="The concise summary")
    word_count: int = Field(description="Number of words in summary")

class Summarizer(Module):
    """Summarize text concisely."""

    initial_input = Input
    final_output = Output

# Use it
summarizer = Summarizer()
result = summarizer(
    text="Long article text here...",
    max_words=50
)

print(result.summary)
print(f"Words: {result.word_count}")

Multi-Turn Agentic Loop

from pydantic import BaseModel, Field
from acorn import Module, tool

class Input(BaseModel):
    topic: str = Field(description="Research topic")
    depth: str = Field(default="shallow", description="Research depth")

class Output(BaseModel):
    findings: str = Field(description="Summary of findings")
    sources: list[str] = Field(description="Sources consulted")

class ResearchAgent(Module):
    """Research assistant with tools."""

    initial_input = Input
    max_steps = 5  # Enable agentic loop
    final_output = Output

    @tool
    def search(self, query: str) -> list:
        """Search for information."""
        # Your search implementation
        return ["result1", "result2"]

    @tool
    def analyze(self, data: str) -> str:
        """Analyze collected data."""
        # Your analysis implementation
        return f"Analysis: {data}"

    def on_step(self, step):
        """Called after each step."""
        print(f"Step {step.counter}")

        # Early termination if done
        if len(step.tool_results) >= 3:
            step.finish(
                findings="Sufficient data collected",
                sources=["source1", "source2"]
            )

        return step

# Use it
agent = ResearchAgent()
result = agent(topic="Large Language Models", depth="shallow")

📚 Core Concepts

Module

Base class for LLM agents. Configure with:

  • model - LLM to use (default: Claude Sonnet 4.5)
  • temperature - Sampling temperature
  • max_tokens - Maximum tokens to generate
  • max_steps - Max agentic loop iterations (None = single-turn)
  • initial_input - Pydantic model for input schema
  • final_output - Pydantic model for output schema
  • tools - List of available tools
  • cache - Enable provider-level prompt caching

Tools

Functions the LLM can call:

@tool
def search(query: str, limit: int = 10) -> list:
    """Search for information.

    Args:
        query: The search query
        limit: Maximum results to return
    """
    return search_api(query, limit)

Schema is automatically generated from type hints and docstring.

Step Callback

Control agentic loop execution:

def on_step(self, step):
    # Access step info
    print(f"Step {step.counter}")
    print(f"Tools called: {[tc.name for tc in step.tool_calls]}")

    # Dynamic tool management
    step.add_tool(new_tool)
    step.remove_tool("old_tool")

    # Early termination
    if condition:
        step.finish(result="Early exit")

    return step

🎯 Examples

See examples/ directory:


🧪 Testing

# Run all tests
pytest

# With coverage
pytest --cov=acorn

# Specific test file
pytest tests/test_agentic_loop.py -v

Current status: 128 tests passing, 90% coverage


📖 Documentation


🛣️ Roadmap

✅ Completed

  • Single-turn execution
  • Multi-turn agentic loops
  • Tool calling with auto-schema generation
  • Parse error recovery
  • Dynamic tool management
  • Step callbacks
  • Streaming responses with partial structured output
  • Forced termination strategies
  • Provider caching

📋 Planned

  • Branching workflows
  • Async support

🤝 Contributing

Contributions welcome! Please:

  1. Check open issues for areas to help
  2. Write tests for new features (maintain >80% coverage)
  3. Update documentation
  4. Add examples for new features

💬 Questions?

Check out:


📄 License

MIT License - see LICENSE for details


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

acorn-0.4.3.tar.gz (81.4 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

acorn-0.4.3-py3-none-any.whl (25.9 kB view details)

Uploaded Python 3

File details

Details for the file acorn-0.4.3.tar.gz.

File metadata

  • Download URL: acorn-0.4.3.tar.gz
  • Upload date:
  • Size: 81.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for acorn-0.4.3.tar.gz
Algorithm Hash digest
SHA256 51b9ae18080235381601bbbd6003fe7a7a88019fd74d9bb6e88fe3093b41a89c
MD5 1b2953d035a2cffcc147fe32c175b5a6
BLAKE2b-256 fd0542ebb93d01533c6e5b889f532280913e1d7b25dbb7bf53f6cb8930299127

See more details on using hashes here.

Provenance

The following attestation bundles were made for acorn-0.4.3.tar.gz:

Publisher: publish.yml on askmanu/acorn

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file acorn-0.4.3-py3-none-any.whl.

File metadata

  • Download URL: acorn-0.4.3-py3-none-any.whl
  • Upload date:
  • Size: 25.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for acorn-0.4.3-py3-none-any.whl
Algorithm Hash digest
SHA256 1a56e2cc80f4ada63aff3c3fad60b40841cb14581abb95c9b1b0d984f9f2491c
MD5 59ee6377e4fc9cf6927ee206ec4aa5c5
BLAKE2b-256 0285e03c672a414a342ac1b842111503dd2906ff152c86699037cfce61d729e1

See more details on using hashes here.

Provenance

The following attestation bundles were made for acorn-0.4.3-py3-none-any.whl:

Publisher: publish.yml on askmanu/acorn

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page