Active semi-supervised clustering algorithms for scikit-learn
Project description
active-semi-supervised-clustering
Active semi-supervised clustering algorithms for scikit-learn.
Algorithms
Semi-supervised clustering
- Seeded-KMeans
- Constrainted-KMeans
- COP-KMeans
- Pairwise constrained K-Means (PCK-Means)
- Metric K-Means (MK-Means)
- Metric pairwise constrained K-Means (MPCK-Means)
Active learning of pairwise clustering
- Explore & Consolidate
- Min-max
- Normalized point-based uncertainty (NPU) method
Installation
pip install active-semi-supervised-clustering
Usage
from sklearn import datasets, metrics
from active_semi_clustering.semi_supervised.pairwise_constraints import PCKMeans
from active_semi_clustering.active.pairwise_constraints import ExampleOracle, ExploreConsolidate, MinMax
X, y = datasets.load_iris(return_X_y=True)
First, obtain some pairwise constraints from an oracle.
# TODO implement your own oracle that will, for example, query a domain expert via GUI or CLI
oracle = ExampleOracle(y, max_queries_cnt=10)
active_learner = MinMax(n_clusters=3)
active_learner.fit(X, oracle=oracle)
pairwise_constraints = active_learner.pairwise_constraints_
Then, use the constraints to do the clustering.
clusterer = PCKMeans(n_clusters=3)
clusterer.fit(X, ml=pairwise_constraints[0], cl=pairwise_constraints[1])
Evaluate the clustering using Adjusted Rand Score.
metrics.adjusted_rand_score(y, clusterer.labels_)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file active-semi-supervised-clustering-0.0.1.tar.gz
.
File metadata
- Download URL: active-semi-supervised-clustering-0.0.1.tar.gz
- Upload date:
- Size: 10.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.3.0 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.6.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5ce2b210988560754a3ca1ac33bc20f60174c7b700504418355ea09e6c149efc |
|
MD5 | b7bf75e99c995593f831865fac6922bf |
|
BLAKE2b-256 | 84cc8189ebe735cd7b6c53869775969d89c6fe2d68a872ddd1cc24df3a38d1ba |
File details
Details for the file active_semi_supervised_clustering-0.0.1-py3-none-any.whl
.
File metadata
- Download URL: active_semi_supervised_clustering-0.0.1-py3-none-any.whl
- Upload date:
- Size: 40.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.3.0 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.6.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 754ab7082c5343a74c9f3089928348622bfc52147062049baa79c53aa584a566 |
|
MD5 | 1b5fd0f81a0703f3d0737b11cc35be9d |
|
BLAKE2b-256 | e5734eb6a2966b94de7ca401d87de4104015bf3c911df0434bd99e1eeac67a84 |