Skip to main content

Convert ArangoDB graphs to NetworkX & vice-versa.

Project description

ArangoDB-Networkx Adapter

build CodeQL Coverage Status Last commit

PyPI version badge Python versions badge

License Code style: black Downloads

The ArangoDB-Networkx Adapter exports Graphs from ArangoDB, the multi-model database for graph & beyond, into NetworkX, the swiss army knife for graph analysis with python, and vice-versa.

About NetworkX

Networkx is a commonly used tool for analysis of network-data. If your analytics use cases require the use of all your graph data, for example, to summarize graph structure, or answer global path traversal queries, then using the ArangoDB Pregel API is recommended. If your analysis pertains to a subgraph, then you may be interested in getting the Networkx representation of the subgraph for one of the following reasons:

1. An algorithm for your use case is available in Networkx.
2. A library that you want to use for your use case works with Networkx Graphs as input.

Installation

Latest Release

pip install adbnx-adapter

Current State

pip install git+https://github.com/arangoml/networkx-adapter.git

Quickstart

Open In Collab

Also available as an ArangoDB Lunch & Learn session: Graph & Beyond Course #2.9

from arango import ArangoClient # Python-Arango driver
from networkx import grid_2d_graph # Sample graph from NetworkX

from adbnx_adapter import ADBNX_Adapter

# Let's assume that the ArangoDB "fraud detection" dataset is imported to this endpoint
db = ArangoClient(hosts="http://localhost:8529").db("_system", username="root", password="")

adbnx_adapter = ADBNX_Adapter(db)

# Use Case 1.1: ArangoDB to NetworkX via Graph name
nx_fraud_graph = adbnx_adapter.arangodb_graph_to_networkx("fraud-detection")

# Use Case 1.2: ArangoDB to NetworkX via Collection names
nx_fraud_graph_2 = adbnx_adapter.arangodb_collections_to_networkx(
    "fraud-detection", 
    {"account", "bank", "branch", "Class", "customer"}, # Vertex collections
    {"accountHolder", "Relationship", "transaction"} # Edge collections
)

# Use Case 1.3: ArangoDB to NetworkX via Metagraph
metagraph = {
    "vertexCollections": {
        "account": {"Balance", "account_type", "customer_id", "rank"},
        "customer": {"Name", "rank"},
    },
    "edgeCollections": {
        "transaction": {"transaction_amt", "sender_bank_id", "receiver_bank_id"},
        "accountHolder": {},
    },
}
nx_fraud_graph_3 = adbnx_adapter.arangodb_to_networkx("fraud-detection", metagraph)

# Use Case 2: NetworkX to ArangoDB
nx_grid_graph = grid_2d_graph(5, 5)
adb_grid_edge_definitions = [
    {
        "edge_collection": "to",
        "from_vertex_collections": ["Grid_Node"],
        "to_vertex_collections": ["Grid_Node"],
    }
]
adb_grid_graph = adbnx_adapter.networkx_to_arangodb("Grid", nx_grid_graph, adb_grid_edge_definitions)

Development & Testing

Prerequisite: arangorestore

  1. git clone https://github.com/arangoml/networkx-adapter.git
  2. cd networkx-adapter
  3. (create virtual environment of choice)
  4. pip install -e .[dev]
  5. (create an ArangoDB instance with method of choice)
  6. pytest --url <> --dbName <> --username <> --password <>

Note: A pytest parameter can be omitted if the endpoint is using its default value:

def pytest_addoption(parser):
    parser.addoption("--url", action="store", default="http://localhost:8529")
    parser.addoption("--dbName", action="store", default="_system")
    parser.addoption("--username", action="store", default="root")
    parser.addoption("--password", action="store", default="")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

adbnx_adapter-4.2.0.tar.gz (27.2 kB view hashes)

Uploaded source

Built Distribution

adbnx_adapter-4.2.0-py3-none-any.whl (15.6 kB view hashes)

Uploaded py3

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page