A modular and easy-to-use framework of adversarial machine learning algorithms: https://en.m.wikipedia.org/wiki/Adversarial_machine_learning
Project description
adv-ml
Docs
See https://irad-zehavi.github.io/adv-ml/
Install
pip install adv_ml
How to use
How to Use
As an nbdev library, adv-ml supports import * (without importing
unwanted symbols):
from adv_ml.all import *
Adversarial Examples
mnist = MNIST()
classifier = MLP(10)
learn = Learner(mnist.dls(), classifier, metrics=accuracy)
learn.fit(1)
| epoch | train_loss | valid_loss | accuracy | time |
|---|---|---|---|---|
| 0 | 0.154410 | 0.177410 | 0.953900 | 00:32 |
sub_dsets = mnist.valid.random_sub_dsets(64)
learn.show_results(shuffle=False, dl=sub_dsets.dl())
attack = InputOptimizer(classifier, LinfPGD(epsilon=.15), n_epochs=10, epoch_size=20)
perturbed_dsets = attack.perturb(sub_dsets)
| epoch | train_loss | time |
|---|---|---|
| 0 | -4.302573 | 00:00 |
| 1 | -7.585707 | 00:00 |
| 2 | -9.014968 | 00:00 |
| 3 | -9.700548 | 00:00 |
| 4 | -10.075110 | 00:00 |
| 5 | -10.296636 | 00:00 |
| 6 | -10.433834 | 00:00 |
| 7 | -10.521141 | 00:00 |
| 8 | -10.577673 | 00:00 |
| 9 | -10.614740 | 00:00 |
learn.show_results(shuffle=False, dl=TfmdDL(perturbed_dsets))
Data Poisoning
patch = torch.tensor([[1, 0, 1],
[0, 1, 0],
[1, 0, 1]]).int()*255
trigger = F.pad(patch, (25, 0, 25, 0)).numpy()
learn = Learner(mnist.dls(), MLP(10), metrics=accuracy, cbs=BadNetsAttack(trigger, '0'))
learn.fit_one_cycle(1)
| epoch | train_loss | valid_loss | accuracy | time |
|---|---|---|---|---|
| 0 | 0.103652 | 0.097075 | 0.971400 | 00:23 |
Benign performance:
learn.show_results()
Attack success:
learn.show_results(2)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file adv-ml-0.0.4.tar.gz.
File metadata
- Download URL: adv-ml-0.0.4.tar.gz
- Upload date:
- Size: 22.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.16
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
fb99423d52072d8e4e1919e8fd3f59c6f259c2e3b756bc38ea0849b9f0437927
|
|
| MD5 |
2aaa95cf2e948b6a85c83879b8dc8a8e
|
|
| BLAKE2b-256 |
8d6208d24ee327042bf70bef28680a06253757222a0c24032da9ecdf98c171fa
|
File details
Details for the file adv_ml-0.0.4-py3-none-any.whl.
File metadata
- Download URL: adv_ml-0.0.4-py3-none-any.whl
- Upload date:
- Size: 20.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.16
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
a1c284973cac35915fa50ad4ae513a7069b594ece6faeb32fda5e869ad0e013f
|
|
| MD5 |
8ee434a5c26a9c81ebf7b553973f7112
|
|
| BLAKE2b-256 |
d8afb3dfb924c69cdb1084ce08107c4072f5e5e94414489803f8da6d7dddde4e
|