Python implementation of Lorentzian Classification algorithm.
Project description
This module is a python implementation of Lorentzian Classification algorithm developed by @jdehorty in pinescript. The original work can be found here - https://www.tradingview.com/script/WhBzgfDu-Machine-Learning-Lorentzian-Classification/
Usage
At the most simplest, you can just do this:
from advanced_ta import LorentzianClassification
.
.
# df here is the dataframe containing stock data as [['open', 'high', 'low', 'close', 'volume']]. Notice that the column names are in lower case.
lc = LorentzianClassification(df)
lc.dump('output/result.csv')
lc.plot('output/result.jpg')
.
.
For advanced use, you can do:
from advanced_ta import LorentzianClassification
from ta.volume import money_flow_index as MFI
.
.
# df here is the dataframe containing stock data as [['open', 'high', 'low', 'close', 'volume']]. Notice that the column names are in lower case.
lc = LorentzianClassification(
df,
features=[
LorentzianClassification.Feature("RSI", 14, 2), # f1
LorentzianClassification.Feature("WT", 10, 11), # f2
LorentzianClassification.Feature("CCI", 20, 2), # f3
LorentzianClassification.Feature("ADX", 20, 2), # f4
LorentzianClassification.Feature("RSI", 9, 2), # f5
MFI(df['open'], df['high'], df['low'], df['close'], df['volume'], 14) #f6
],
settings=LorentzianClassification.Settings(
source='close',
neighborsCount=8,
maxBarsBack=2000,
useDynamicExits=False
),
filterSettings=LorentzianClassification.FilterSettings(
useVolatilityFilter=True,
useRegimeFilter=True,
useAdxFilter=False,
regimeThreshold=-0.1,
adxThreshold=20,
kernelFilter = LorentzianClassification.KernelFilter(
useKernelSmoothing = False
lookbackWindow = 8
relativeWeight = 8.0
regressionLevel = 25
crossoverLag = 2
)
))
lc.dump('output/result.csv')
lc.plot('output/result.jpg')
.
.
Sample Plot
Generated
Reference From TradingView
Version History
0.1.8
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file advanced_ta-0.1.8.tar.gz.
File metadata
- Download URL: advanced_ta-0.1.8.tar.gz
- Upload date:
- Size: 12.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.4.0 CPython/3.11.5 Linux/6.6.10-76060610-generic
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
c29194cae57de69baa340381bd73377a2c942b0f43c7895b550bdb0384a3647e
|
|
| MD5 |
6bce88ad5fca1172874bfa939cc1ba00
|
|
| BLAKE2b-256 |
0f7ee759cb4b729a915abf7bd8dae685945f45b61e608af71da47219295a21ca
|
File details
Details for the file advanced_ta-0.1.8-py3-none-any.whl.
File metadata
- Download URL: advanced_ta-0.1.8-py3-none-any.whl
- Upload date:
- Size: 14.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.4.0 CPython/3.11.5 Linux/6.6.10-76060610-generic
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
e4f8a04d1b9b500c32fb70a55959af40b9cfa155e5d992bc4882e157d8d71312
|
|
| MD5 |
15deae94307c0b392bbc0760d2ad89d0
|
|
| BLAKE2b-256 |
a3aa9dec2c31848ae74d527b5712c895ca62e20b97349b575870579e820eb460
|