Skip to main content

Matrices describing affine transformation of the plane.

Project description

Matrices describing affine transformation of the plane.

https://travis-ci.org/sgillies/affine.svg?branch=master

The Affine package is derived from Casey Duncan’s Planar package. Please see the copyright statement in affine/__init__.py.

Usage

The 3x3 augmented affine transformation matrix for transformations in two dimensions is illustrated below.

Matrices can be created by passing the values a, b, c, d, e, f to the affine.Affine constructor or by using its identity(), translation(), scale(), shear(), and rotation() class methods.

>>> from affine import Affine
>>> Affine.identity()
Affine(1.0, 0.0, 0.0,
       0.0, 1.0, 0.0)
>>> Affine.translation(1.0, 5.0)
Affine(1.0, 0.0, 1.0,
       0.0, 1.0, 5.0)
>>> Affine.scale(2.0)
Affine(2.0, 0.0, 0.0,
       0.0, 2.0, 0.0)
>>> Affine.shear(45.0, 45.0)  # decimal degrees
Affine(1.0, 0.9999999999999999, 0.0,
       0.9999999999999999, 1.0, 0.0)
>>> Affine.rotation(45.0)     # decimal degrees
Affine(0.7071067811865476, 0.7071067811865475, 0.0,
       -0.7071067811865475, 0.7071067811865476, 0.0)

These matrices can be applied to (x, y) tuples to obtain transformed coordinates (x', y').

>>> Affine.translation(1.0, 5.0) * (1.0, 1.0)
(2.0, 6.0)
>>> Affine.rotation(45.0) * (1.0, 1.0)
(1.1102230246251565e-16, 1.414213562373095)

They may also be multiplied together to combine transformations.

>>> Affine.translation(1.0, 5.0) * Affine.rotation(45.0)
Affine(0.7071067811865476, 0.7071067811865475, 1.0,
       -0.7071067811865475, 0.7071067811865476, 5.0)

Usage with GIS data packages

Georeferenced raster datasets use affine transformations to map from image coordinates to world coordinates. The affine.Affine.from_gdal() class method helps convert GDAL GeoTransform, sequences of 6 numbers in which the first and fourth are the x and y offsets and the second and sixth are the x and y pixel sizes.

Using a GDAL dataset transformation matrix, the world coordinates (x, y) corresponding to the top left corner of the pixel 100 rows down from the origin can be easily computed.

>>> geotransform = (-237481.5, 425.0, 0.0, 237536.4, 0.0, -425.0)
>>> fwd = Affine.from_gdal(*geotransform)
>>> col, row = 0, 100
>>> fwd * (col, row)
(-237481.5, 195036.4)

The reverse transformation is obtained using the ~ operator.

>>> rev = ~fwd
>>> rev * fwd * (col, row)
(0.0, 99.99999999999999)

Project details


Release history Release notifications

This version
History Node

2.2.0

History Node

2.1.0

History Node

2.0.0.post1

History Node

2.0.0

History Node

2.0b2

History Node

2.0b1

History Node

1.3.0

History Node

1.2.0

History Node

1.1.0

History Node

1.0.1

History Node

1.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
affine-2.2.0-py2.py3-none-any.whl (16.1 kB) Copy SHA256 hash SHA256 Wheel py2.py3 Mar 21, 2018
affine-2.2.0.tar.gz (13.9 kB) Copy SHA256 hash SHA256 Source None Mar 21, 2018

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging CloudAMQP CloudAMQP RabbitMQ AWS AWS Cloud computing Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page