Atomic Graph ATtention networks for predicting atomic energies and forces.
Project description
AGAT (Atomic Graph ATtention networks)
Using AGAT
The documentation of AGAT API is available.
Installation
Install with conda environment
-
Download the
agat_linux_gpu_cu124.ymlfile. -
Run
conda env create -f agat_linux_gpu_cu124.yml
-
Install CUDA and CUDNN [Optional].
- For HPC, you may load CUDA by checking
module av, or you can contact your administrator for help. - CUDA Toolkit
- cuDNN
- For HPC, you may load CUDA by checking
-
More installation options: Customized installation
Quick start
Prepare VASP calculations
Run VASP calculations at this step.
Collect paths of VASP calculations
-
We provided examples of VASP outputs at VASP_calculations_example.
-
Find all directories containing
OUTCARfile:find . -name OUTCAR > paths.log -
Remove the string 'OUTCAR' in
paths.log.sed -i 's/OUTCAR$//g' paths.log -
Specify the absolute paths in
paths.log.sed -i "s#^.#${PWD}#g" paths.log
Build database
from agat.data import BuildDatabase
if __name__ == '__main__':
database = BuildDatabase(mode_of_NN='ase_dist', num_of_cores=16)
dataset = database.build()
Train AGAT model
from agat.model import Fit
f = Fit()
f.fit()
Application (geometry optimization)
from ase.optimize import BFGS
from ase.io import read
from agat.app import AgatCalculator
model_save_dir = 'agat_model'
graph_build_scheme_dir = 'dataset'
atoms = read('POSCAR')
calculator=AgatCalculator(model_save_dir,
graph_build_scheme_dir)
atoms = Atoms(atoms, calculator=calculator)
dyn = BFGS(atoms, trajectory='test.traj')
dyn.run(fmax=0.05)
Application (high-throughput prediction)
from agat.app.cata import HtAds
model_save_dir = 'agat_model'
graph_build_scheme_dir = 'dataset'
formula='NiCoFePdPt'
ha = HtAds(model_save_dir=model_save_dir, graph_build_scheme_dir=graph_build_scheme_dir)
ha.run(formula=formula)
Tips:
See API doc for more details. For example:
- Manipulating
agat.dataset: - AGAT molecular dynamics simulations:
- More options for controlling the AGAT training process: docs/sphinx/source/Default parameters.md.
Some default parameters
agat/default_parameters.py; Explanations: docs/sphinx/source/Default parameters.md.
Package structure
Change log
Please check Change_log.md
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file agat-9.1.1.tar.gz.
File metadata
- Download URL: agat-9.1.1.tar.gz
- Upload date:
- Size: 80.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.2.0 CPython/3.13.7
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
1606522d1f698898f08d9d8f74c4631e41cb570682800e1c8fca7d9c92b58dd2
|
|
| MD5 |
c2268a1b01f33b1c2f34b5b799f4a0e9
|
|
| BLAKE2b-256 |
a7f72362bcd42617b3c7d1a8ca30b979535c57581140fc4ed0eb56adef41b3b5
|
File details
Details for the file agat-9.1.1-py3-none-any.whl.
File metadata
- Download URL: agat-9.1.1-py3-none-any.whl
- Upload date:
- Size: 85.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.2.0 CPython/3.13.7
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
f3b42b4760ca42387202b39449512835183c88c46380130b54044bcbcb95c92d
|
|
| MD5 |
b1f72a9c9831ede425b3c5ad28e37c02
|
|
| BLAKE2b-256 |
09493b23aaf833dfdf8970540f9564c766606088ee9f9c47ebcd54fdedfa7b9e
|