Skip to main content

Atomic Graph ATtention networks for predicting atomic energies and forces.

Project description

AGAT (Atomic Graph ATtention networks)

GitHub Pypi PyPI - Downloads PyPI - Wheel



Model architecture

Using AGAT

The documentation of AGAT API is available.

Installation

Install with conda environment

Quick start

Prepare VASP calculations

Run VASP calculations at this step.

Collect paths of VASP calculations

  • We provided examples of VASP outputs at VASP_calculations_example.

  • Find all directories containing OUTCAR file:

    find . -name OUTCAR > paths.log
    
  • Remove the string 'OUTCAR' in paths.log.

    sed -i 's/OUTCAR$//g' paths.log
    
  • Specify the absolute paths in paths.log.

    sed -i "s#^.#${PWD}#g" paths.log
    

Build database

from agat.data import BuildDatabase
if __name__ == '__main__':
    database = BuildDatabase(mode_of_NN='ase_dist', num_of_cores=16)
    dataset = database.build()

Train AGAT model

from agat.model import Fit
f = Fit()
f.fit()

Application (geometry optimization)

from ase.optimize import BFGS
from ase.io import read
from agat.app import AgatCalculator

model_save_dir = 'agat_model'
graph_build_scheme_dir = 'dataset'

atoms = read('POSCAR')
calculator=AgatCalculator(model_save_dir,
                          graph_build_scheme_dir)
atoms = Atoms(atoms, calculator=calculator)
dyn = BFGS(atoms, trajectory='test.traj')
dyn.run(fmax=0.05)

Application (high-throughput prediction)

from agat.app.cata import HtAds

model_save_dir = 'agat_model'
graph_build_scheme_dir = 'dataset'
formula='NiCoFePdPt'

ha = HtAds(model_save_dir=model_save_dir, graph_build_scheme_dir=graph_build_scheme_dir)
ha.run(formula=formula)

Tips:

See API doc for more details. For example:

Some default parameters

agat/default_parameters.py; Explanations: docs/sphinx/source/Default parameters.md.

Package structure

Model architecture

Change log

Please check Change_log.md

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

agat-9.1.1.tar.gz (80.3 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

agat-9.1.1-py3-none-any.whl (85.0 kB view details)

Uploaded Python 3

File details

Details for the file agat-9.1.1.tar.gz.

File metadata

  • Download URL: agat-9.1.1.tar.gz
  • Upload date:
  • Size: 80.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.7

File hashes

Hashes for agat-9.1.1.tar.gz
Algorithm Hash digest
SHA256 1606522d1f698898f08d9d8f74c4631e41cb570682800e1c8fca7d9c92b58dd2
MD5 c2268a1b01f33b1c2f34b5b799f4a0e9
BLAKE2b-256 a7f72362bcd42617b3c7d1a8ca30b979535c57581140fc4ed0eb56adef41b3b5

See more details on using hashes here.

File details

Details for the file agat-9.1.1-py3-none-any.whl.

File metadata

  • Download URL: agat-9.1.1-py3-none-any.whl
  • Upload date:
  • Size: 85.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.7

File hashes

Hashes for agat-9.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 f3b42b4760ca42387202b39449512835183c88c46380130b54044bcbcb95c92d
MD5 b1f72a9c9831ede425b3c5ad28e37c02
BLAKE2b-256 09493b23aaf833dfdf8970540f9564c766606088ee9f9c47ebcd54fdedfa7b9e

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page