Skip to main content

Atomic Graph ATtention networks for predicting atomic energies and forces.

Project description

AGAT (Atomic Graph ATtention networks)

GitHub Pypi PyPI - Downloads PyPI - Wheel Documentation Status

The PyTorch backend AGAT is available now, try with pip install agat==8.*. For previous version, install with pip install agat==7.*.



Model architecture

Using AGAT

The documentation of AGAT API is available.

Installation

Install with conda environment

  • Create a new environment

    conda create -n agat python==3.10
    
  • Activate the environment

    conda activate agat
    
  • Install PyTorch,
    Navigate to the installation page and choose you platform. For example (GPU):

    conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia
    
  • Install dgl.
    Please navigate to the Get Started page of dgl. For example (GPU):

    conda install -c dglteam/label/cu118 dgl
    
  • Install AGAT package

    pip install agat
    
  • Install CUDA and CUDNN [Optional].

    • For HPC, you may load CUDA by checking module av, or you can contact your administrator for help.
    • CUDA Toolkit
    • cuDNN

Quick start

Prepare VASP calculations

Run VASP calculations at this step.

Collect paths of VASP calculations

  • We provided examples of VASP outputs at VASP_calculations_example.
  • Find all directories containing OUTCAR file:
    find . -name OUTCAR > paths.log
    
  • Remove the string 'OUTCAR' in paths.log.
    sed -i 's/OUTCAR$//g' paths.log
    
  • Specify the absolute paths in paths.log.
    sed -i "s#^.#${PWD}#g" paths.log
    

Build database

from agat.data import BuildDatabase
if __name__ == '__main__':
    database = BuildDatabase(mode_of_NN='ase_dist', num_of_cores=16)
    database.build()

Train AGAT model

from agat.model import Fit
f = Fit()
f.fit()

Application (geometry optimization)

from ase.optimize import BFGS
from agat.app import AgatCalculator
from ase.io import read
from ase import Atoms

model_save_dir = 'agat_model'
graph_build_scheme_dir = 'dataset'

atoms = read('POSCAR')
calculator=AgatCalculator(model_save_dir,
                          graph_build_scheme_dir)
atoms = Atoms(atoms, calculator=calculator)
dyn = BFGS(atoms, trajectory='test.traj')
dyn.run(fmax=0.05)

Application (high-throughput prediction)

from agat.app.cata import HpAds

model_save_dir = 'agat_model'
graph_build_scheme_dir = 'dataset'
formula='NiCoFePdPt'

ha = HpAds(model_save_dir=model_save_dir, graph_build_scheme_dir=graph_build_scheme_dir)
ha.run(formula=formula)

For more custom manipulations, see our documentation page.

Documentation Status

Some default parameters

agat/default_parameters.py; Explanations: docs/sphinx/source/Default parameters.md.

Change log

Please check Change_log.md

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

agat-8.0.3.tar.gz (62.1 kB view details)

Uploaded Source

Built Distribution

agat-8.0.3-py3-none-any.whl (66.3 kB view details)

Uploaded Python 3

File details

Details for the file agat-8.0.3.tar.gz.

File metadata

  • Download URL: agat-8.0.3.tar.gz
  • Upload date:
  • Size: 62.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.5

File hashes

Hashes for agat-8.0.3.tar.gz
Algorithm Hash digest
SHA256 4515c3ab382b1b83feac2a65c0232dc44ad9f8d5642a4c409eebd662ee3e3961
MD5 a018df5057952a062c73886876854525
BLAKE2b-256 e4cfe2ec7d8acdf3fe721138e5e8acb03d5a48383f0abdde1213db8bdca673da

See more details on using hashes here.

File details

Details for the file agat-8.0.3-py3-none-any.whl.

File metadata

  • Download URL: agat-8.0.3-py3-none-any.whl
  • Upload date:
  • Size: 66.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.5

File hashes

Hashes for agat-8.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 b41d95d101a93e1591459362d291ab3d64f8dfa83813b3b0815dd3b7f55e06d9
MD5 46b42fecaa7b8bc9b342aab9c794b280
BLAKE2b-256 948f293336577c934a8401dc99e69a3d4756d13453114153518b542424276f5a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page