Skip to main content

Machine learning tools to complement the AIronSuit package.

Project description

AIronTools

AIronTools (Beta) is a Python library that provides the user with deep learning tools built to work with tensorflow (or pytorch in the future) as a backend.

Key features:

  1. Model constructor that allows multiple models to be optimized in parallel across multiple GPUs.
  2. Block constructor to build customised blocks/models.
  3. Layer constructor to build customised layers.
  4. Preprocessing utils.

Installation

pip install airontools

Custom Keras subclass to build a variational autoencoder (VAE) with airontools

import tensorflow as tf
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, Layer, Reshape
from tensorflow.keras.metrics import Mean
from tensorflow.keras.losses import binary_crossentropy
from tensorflow.keras.optimizers import Adam

os.environ['AIRONSUIT_BACKEND'] = 'tensorflow'
from aironsuit.suit import AIronSuit
from airontools.preprocessing import train_val_split
from airontools.model_constructors import layer_constructor

class VAE(Model):
    def __init__(self, latent_dim, **kwargs):
        super(VAE, self).__init__(**kwargs)

        self.total_loss_tracker = Mean(name="total_loss")
        self.reconstruction_loss_tracker = Mean(name="reconstruction_loss")
        self.kl_loss_tracker = Mean(name="kl_loss")

        # Encoder
        encoder_inputs = Input(shape=(28, 28, 1))
        encoder_conv = layer_constructor(
            encoder_inputs, name='encoder_conv', filters=32, kernel_size=3, strides=2, advanced_reg=True)
        z_mean = layer_constructor(encoder_conv, name='encoder_mean', units=latent_dim, advanced_reg=True)
        z_log_var = layer_constructor(encoder_conv, name='encoder_log_var', units=latent_dim, advanced_reg=True)
        z = Sampling()([z_mean, z_log_var])
        self.encoder = Model(encoder_inputs, [z_mean, z_log_var, z], name="encoder")

        # Decoder
        latent_inputs = Input(shape=(latent_dim,))
        decoder_outputs = layer_constructor(latent_inputs, name='encoder_dense', units=7 * 7 * 64, advanced_reg=True)
        decoder_outputs = Reshape((7, 7, 64))(decoder_outputs)
        for i, filters, activation in zip([1, 2], [64, 32], ['relu', 'relu']):
            decoder_outputs = layer_constructor(
                decoder_outputs,
                name='decoder_conv', name_ext=str(i), activation=activation, filters=filters, kernel_size=3,
                strides=2, padding='same', conv_transpose=True, advanced_reg=True)
        decoder_outputs = layer_constructor(
            decoder_outputs,
            name='decoder_output', activation='sigmoid', filters=1, kernel_size=3, padding='same',
            conv_transpose=True, advanced_reg=True)
        self.decoder = Model(latent_inputs, decoder_outputs, name="decoder")

More examples

see usage examples in aironsuit/examples

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

airontools-0.1.8-py3-none-any.whl (16.2 kB view details)

Uploaded Python 3

File details

Details for the file airontools-0.1.8-py3-none-any.whl.

File metadata

  • Download URL: airontools-0.1.8-py3-none-any.whl
  • Upload date:
  • Size: 16.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.5

File hashes

Hashes for airontools-0.1.8-py3-none-any.whl
Algorithm Hash digest
SHA256 430809414867d0b0cfa1b89b7f3dec573d26121c3b5d628442ff9a290049e060
MD5 59a997d5e5a201327701eea23ea37d31
BLAKE2b-256 1ca1ee4f0a89c7f7eb356f1da893ab5726ba05871394ac223304efb0f1926e5d

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page