Skip to main content

A python library to measure algorithms execution time and compare with its theoretical complexity

Project description

Almetro Library

version number: 1.0.7 author: Arnour Sabino

Overview

A python library to measure algorithms execution time and compare with its theoretical complexity.

Build Status

Installation / Usage

To install use pip:

$ pip install almetro

Or clone the repo:

$ git clone https://github.com/arnour/almetro.git
$ python setup.py install

Information

Almetro uses timeit module from python to time your algorithms.

See more here

Examples

Applying Almetro to a quadratic algorithm:

import almetro
from almetro.algorithms import loop_n_quadratic
from almetro.complexity import cn_quadratic
from almetro.instance import growing

metro = almetro\
            .new()\
            .with_execution(trials=5)\
            .with_instances(instances=20, provider=growing(initial_size=100, growth_size=100))\
            .metro(algorithm=loop_n_quadratic, complexity=cn_quadratic)

chart = metro.chart()

chart.show()

Chart Almetro n quadratic


Applying Almetro to a lg n algorithm:

import almetro
from almetro.algorithms import loop_n_log
from almetro.complexity import clog_n
from almetro.instance import growing

metro = almetro\
            .new()\
            .with_execution(trials=100)\
            .with_instances(instances=20, provider=growing(initial_size=10000, growth_size=10000))\
            .metro(algorithm=loop_n_log, complexity=clog_n)

chart = metro.chart()

chart.show()

Chart Almetro lg n


Customazing execution:

import almetro
from almetro.complexity import Complexity
from almetro.instance import generator

my_custom_complexity = Complexity(
    theoretical=lambda v=1, e=1, c=1: v * v,
    experimental=lambda v=1, e=1, c=1: v + e,
    text='O(v^2)',
    latex=r'$\mathcal{O}(v^2)$'
)

# You need to provide instances as dict: {'name': '', 'size': {}, 'value': {}}
# Size must contains all needed theoretical complexity arguments
# Value must contain all needed algorithms arguments

def my_custom_instances(n):
    g = create_some_graph()
    for _ in range(n):
        yield {
            'name': 'my instance name',
            'size': {'v': len(g.nodes()), 'e': len(g.edges())}, 'c': some_order_value(),
            'value': {
                'graph': g,
                'v': len(g.nodes())
            }
        }

def my_custom_algorithm(graph, v):
    # Do some stuff
    pass

N = 50

instances_generator = my_custom_instances(N)

# Trials determine how many times each instance will be repeated for Almetro to pick the min time.
metro = almetro\
            .new()\
            .with_execution(trials=5)\
            .with_instances(instances=N, provider=generator(instances_generator)\
            .metro(algorithm=my_custom_algorithm, complexity=my_custom_complexity)

metro.chart().show()

Chart Almetro v^2

metro.table().show()

Table Almetro v^2


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for almetro, version 1.0.7
Filename, size File type Python version Upload date Hashes
Filename, size almetro-1.0.7-py3-none-any.whl (11.8 kB) File type Wheel Python version py3 Upload date Hashes View hashes
Filename, size almetro-1.0.7.tar.gz (11.3 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page