Skip to main content

Python API for AMPL

Project description

AMPLPY: Python API for AMPL

# Install Python API for AMPL
$ python -m pip install amplpy --upgrade

# Install solver modules (e.g., HiGHS, CBC, Gurobi)
$ python -m amplpy.modules install highs cbc gurobi

# Activate your license (e.g., free https://ampl.com/ce license)
$ python -m amplpy.modules activate <license-uuid>

# Import in Python
$ python
>>> from amplpy import AMPL
>>> ampl = AMPL() # instantiate AMPL object
# Minimal example:
from amplpy import AMPL
import pandas as pd
ampl = AMPL()
ampl.eval(r"""
    set A ordered;
    param S{A, A};
    param lb default 0;
    param ub default 1;
    var w{A} >= lb <= ub;
    minimize portfolio_variance:
        sum {i in A, j in A} w[i] * S[i, j] * w[j];
    s.t. portfolio_weights:
        sum {i in A} w[i] = 1;
""")
tickers, cov_matrix = # ... pre-process data in Python
ampl.set["A"] = tickers
ampl.param["S"] = pd.DataFrame(cov_matrix, index=tickers, columns=tickers)
ampl.solve(solver="gurobi", gurobi_options="outlev=1")
assert ampl.solve_result == "solved"
sigma = ampl.get_value("sqrt(sum {i in A, j in A} w[i] * S[i, j] * w[j])")
print(f"Volatility: {sigma*100:.1f}%")
# ... post-process solution in Python

[Documentation] [AMPL Modules for Python] [Available on Google Colab] [AMPL Community Edition]

amplpy is an interface that allows developers to access the features of AMPL from within Python. For a quick introduction to AMPL see Quick Introduction to AMPL.

In the same way that AMPL’s syntax matches naturally the mathematical description of the model, the input and output data matches naturally Python lists, sets, dictionaries, pandas and numpy objects.

All model generation and solver interaction is handled directly by AMPL, which leads to great stability and speed; the library just acts as an intermediary, and the added overhead (in terms of memory and CPU usage) depends mostly on how much data is sent and read back from AMPL, the size of the expanded model as such is irrelevant.

With amplpy you can model and solve large scale optimization problems in Python with the performance of heavily optimized C code without losing model readability. The same model can be deployed on applications built on different languages by just switching the API used.

Documentation

Repositories:

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

amplpy-0.15.2.tar.gz (1.7 MB view details)

Uploaded Source

Built Distributions

amplpy-0.15.2-cp313-cp313-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.13Windows x86-64

amplpy-0.15.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64

amplpy-0.15.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ ARM64

amplpy-0.15.2-cp313-cp313-macosx_10_13_x86_64.whl (829.9 kB view details)

Uploaded CPython 3.13macOS 10.13+ x86-64

amplpy-0.15.2-cp313-cp313-macosx_10_13_universal2.whl (1.1 MB view details)

Uploaded CPython 3.13macOS 10.13+ universal2 (ARM64, x86-64)

amplpy-0.15.2-cp312-cp312-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.12Windows x86-64

amplpy-0.15.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

amplpy-0.15.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARM64

amplpy-0.15.2-cp312-cp312-macosx_10_13_x86_64.whl (831.8 kB view details)

Uploaded CPython 3.12macOS 10.13+ x86-64

amplpy-0.15.2-cp312-cp312-macosx_10_13_universal2.whl (1.1 MB view details)

Uploaded CPython 3.12macOS 10.13+ universal2 (ARM64, x86-64)

amplpy-0.15.2-cp311-cp311-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.11Windows x86-64

amplpy-0.15.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

amplpy-0.15.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

amplpy-0.15.2-cp311-cp311-macosx_10_9_x86_64.whl (837.2 kB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

amplpy-0.15.2-cp311-cp311-macosx_10_9_universal2.whl (1.1 MB view details)

Uploaded CPython 3.11macOS 10.9+ universal2 (ARM64, x86-64)

amplpy-0.15.2-cp310-cp310-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.10Windows x86-64

amplpy-0.15.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

amplpy-0.15.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

amplpy-0.15.2-cp310-cp310-macosx_10_9_x86_64.whl (827.9 kB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

amplpy-0.15.2-cp310-cp310-macosx_10_9_universal2.whl (1.1 MB view details)

Uploaded CPython 3.10macOS 10.9+ universal2 (ARM64, x86-64)

amplpy-0.15.2-cp39-cp39-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.9Windows x86-64

amplpy-0.15.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

amplpy-0.15.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

amplpy-0.15.2-cp39-cp39-macosx_10_9_x86_64.whl (828.6 kB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

amplpy-0.15.2-cp39-cp39-macosx_10_9_universal2.whl (1.1 MB view details)

Uploaded CPython 3.9macOS 10.9+ universal2 (ARM64, x86-64)

amplpy-0.15.2-cp38-cp38-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.8Windows x86-64

amplpy-0.15.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

amplpy-0.15.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARM64

amplpy-0.15.2-cp38-cp38-macosx_10_9_x86_64.whl (844.1 kB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

amplpy-0.15.2-cp38-cp38-macosx_10_9_universal2.whl (1.1 MB view details)

Uploaded CPython 3.8macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file amplpy-0.15.2.tar.gz.

File metadata

  • Download URL: amplpy-0.15.2.tar.gz
  • Upload date:
  • Size: 1.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.6

File hashes

Hashes for amplpy-0.15.2.tar.gz
Algorithm Hash digest
SHA256 9efb4861545e012fa7caf71dea1c6d0af255f1300707970d032e14e6d1840293
MD5 dccfed181d0852150e5fd72ae88daf21
BLAKE2b-256 f3ca20d8319f8c157676dbbd96c00732097d06f2c893c5715ff4c10d21ad4572

See more details on using hashes here.

File details

Details for the file amplpy-0.15.2-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: amplpy-0.15.2-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.6

File hashes

Hashes for amplpy-0.15.2-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 8b33fbe6bad6054fc2de27f09a6a7d3842649e0fd9f8a8198d92c62186ce6921
MD5 5b918856aab5cf322b2e011c1017d657
BLAKE2b-256 6e41a407cf1902e2cf6f006d85a0624ea0da2b3241d8cb86fbaeaead03ef2d6f

See more details on using hashes here.

File details

Details for the file amplpy-0.15.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amplpy-0.15.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fed338a6f9f5392b3433c12858f825207e6cf990f035536efb6d03e0679d95f8
MD5 e0b1e542a9b17a39f7790da5fbc412f8
BLAKE2b-256 dc2b6ecc4504ebec8608769cd3ec5cb8dd0459968539a251fe1bcbe24b914928

See more details on using hashes here.

File details

Details for the file amplpy-0.15.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amplpy-0.15.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 460ee67b2db2134fda8db8b84a03c61c4af4b7e8e09971465fac79e656a1f989
MD5 0c70aa2e096b69960d3b84cad36be592
BLAKE2b-256 21ff930302da89a163edf63c1519f9142d0e39f70bed04d3884b195bc1ab7298

See more details on using hashes here.

File details

Details for the file amplpy-0.15.2-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for amplpy-0.15.2-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 fa2727ead72e4161acce4d1573b28cee098af298fe9bb074315810ac9bbd7770
MD5 37e520f37874356b19168f2a3c23df2b
BLAKE2b-256 bec7bff6235d2cfa8ba55a40566a3c5239772d276daa476b8e045b3b00aebf25

See more details on using hashes here.

File details

Details for the file amplpy-0.15.2-cp313-cp313-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for amplpy-0.15.2-cp313-cp313-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 a71ef66a10363ea8f1a1de2698c8b017d5524de29800631ba88cc039a98c7d52
MD5 1d28391fdf3d544da24286d10c450499
BLAKE2b-256 fe57dd6043ce91f4137a6af32e168fa2897b321925ae46ae3a318956e8b2535f

See more details on using hashes here.

File details

Details for the file amplpy-0.15.2-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: amplpy-0.15.2-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.6

File hashes

Hashes for amplpy-0.15.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 2d9f84fa8e10b6163589f575d2c67cbe1d19ac1e98aa81be7bb5b90b6c55d929
MD5 644a20b4cf0eb33e68964e91b9db9674
BLAKE2b-256 475e092a4cd36138de0211f244806cd66d3e838a48a7795ea1ba71918219b668

See more details on using hashes here.

File details

Details for the file amplpy-0.15.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amplpy-0.15.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 aef1066b58a517b986caf7dc740fcd587a75fc0d4eca9e474007c323c8258ca4
MD5 7e6d18fee681db1120c5958067083c58
BLAKE2b-256 1fe3673323ecd7cb6d2200d234b9b694fc604360a749afbfd6a24ba3732098bc

See more details on using hashes here.

File details

Details for the file amplpy-0.15.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amplpy-0.15.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c32d19f3a2111ae5f8c2c0f5931c3d19e28fcc356c21056732490fec6916e3e6
MD5 69472deaf64785e82f2698ea74d426d7
BLAKE2b-256 92fcd24f0513515527ac0f8988e903677e54bad1eaea3d7bc9417048e34e996c

See more details on using hashes here.

File details

Details for the file amplpy-0.15.2-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for amplpy-0.15.2-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 64024e6f6408a5eb02a0330a50f09acd29ad4430a6082c1e5b864d98c49830a1
MD5 7d178db19663a248b724bd456b05d635
BLAKE2b-256 149b20efc4c8952bd33ace680b8082fc95c9301162af7810635e33a691e1e311

See more details on using hashes here.

File details

Details for the file amplpy-0.15.2-cp312-cp312-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for amplpy-0.15.2-cp312-cp312-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 02ab01f1bde7ed4a591b320eb464c7b03ce81b9e4dc4525107e01ffaa706589c
MD5 c23bc85b12f1dc06735db13678eda2f2
BLAKE2b-256 29b196872f91959886d14a06b8f2b8bbfdbebb6485f6896336ac966ec8276fb4

See more details on using hashes here.

File details

Details for the file amplpy-0.15.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: amplpy-0.15.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.6

File hashes

Hashes for amplpy-0.15.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 1fdf2eddba0c6bb4a8fd37741254499999b840e7b3b5c3f7b9961164eda228ed
MD5 abb51f6096a2a5957779a8df867a07c8
BLAKE2b-256 47c0e8cfe0e5bf24ab582284fe34b9fa9ecb07167ce96408cf0b7584ceb4e54d

See more details on using hashes here.

File details

Details for the file amplpy-0.15.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amplpy-0.15.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f17b3accc489e1666d2bdc16a6bbfd4a79dc9f3525916bc3744c5ad053fec18a
MD5 f3cd0bb8278c2d80c28e5fa12a4b63be
BLAKE2b-256 4f68773bc89f727461035e67e6d4292e87081fd51eadb3b685f8a1a84d8fedaf

See more details on using hashes here.

File details

Details for the file amplpy-0.15.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amplpy-0.15.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3263dccd5922e6b556b88ade8871d5d2ef10898084005fe2770b0d03ea01d944
MD5 32c403737d822550170dc58810a3032b
BLAKE2b-256 baaeec6dd1bac444caa7c12c54cb8f3cca6f951c66b7cf919b2f632b67b90105

See more details on using hashes here.

File details

Details for the file amplpy-0.15.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for amplpy-0.15.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b49de227b6cf14fc483262429345b536d1f8607e6d9343173bbdd8b6fee97fde
MD5 07b2e5c6131d22bfdcd8c23232b70691
BLAKE2b-256 804fe6b39d551f77926adac0ba9699d3e81b6d8eadd753e9d362ffccc2d3c21d

See more details on using hashes here.

File details

Details for the file amplpy-0.15.2-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for amplpy-0.15.2-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 9da898bea4c0a934cc689f6f6e89723af5c70176ab0ad16b5b925856e9b483a0
MD5 f3dea62ffb82941e56ca0e69bcc35ab3
BLAKE2b-256 242d03370cbb66aac02e67762deac52ca5e3638eec403fe62a6a4c431f89c77e

See more details on using hashes here.

File details

Details for the file amplpy-0.15.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: amplpy-0.15.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.6

File hashes

Hashes for amplpy-0.15.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 a2f36b224a4b28f22e3a14f749844531c9c04a7ba42622705cce692638ab7b7a
MD5 9efd2acfaef4a656fd075343f3a2ba4a
BLAKE2b-256 08df29b68156ac67c74633c59eae79e029cb33dc6862a5d5b5ec9be92c6b96c9

See more details on using hashes here.

File details

Details for the file amplpy-0.15.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amplpy-0.15.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5b52f5280b87b9a6d866784d57c95210e198882297ac17c3c735fc9201d91c23
MD5 7cc5745c0a474920a50d65bd7bb0d9d5
BLAKE2b-256 b555177dbc3cfb0e7b02f5d77774212b9314e8337dd95ba6d46da5e5c6dad67a

See more details on using hashes here.

File details

Details for the file amplpy-0.15.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amplpy-0.15.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d98e2127f071658b62902f6c55c3ab56257a40a765a860baf0c2b39c76b4084f
MD5 5a4d8a6e2cbb9e0fe770750e010c8dd2
BLAKE2b-256 34956852c10d8f0c8a13aa339b340e5ac67c5eec55600650fbd7aab04d78d490

See more details on using hashes here.

File details

Details for the file amplpy-0.15.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for amplpy-0.15.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 66897f0cfb00cab7462f6c59694bc5e8a98731fef5dad374913cdb228e086cd8
MD5 44a32afa0894b10ee4cfefe72aaa52a1
BLAKE2b-256 cef9aeccf77e066ff453d558e1438f2585906e443ce28d73d8e0ee8cfe1e2997

See more details on using hashes here.

File details

Details for the file amplpy-0.15.2-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for amplpy-0.15.2-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 38723b624350f290d483a3aa592ee38a68e087f6442c07d2fea8ad9563d8812c
MD5 8ec14277aea0132f037e4ba2a7112161
BLAKE2b-256 bd0c1e62f917472c4d9a1863fa2295c37c6312f9974c9b20cb2ffec6e800be43

See more details on using hashes here.

File details

Details for the file amplpy-0.15.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: amplpy-0.15.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.6

File hashes

Hashes for amplpy-0.15.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 7bf07cc70506b8cd81f95a0bcf78e0b54c9773490212f94629bc8fcb648b462e
MD5 0cafb3ada66d6148e9f5514efa2a7b16
BLAKE2b-256 bee50e2cee63f1016213808e061f5354ec6dbe4fc57bd889177cb6d1d5a171c6

See more details on using hashes here.

File details

Details for the file amplpy-0.15.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amplpy-0.15.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a31d1bf306005ccaa792ede9410de9aa209b69616a4956eed6bac580f57fdd9a
MD5 89e06c491076bbceb256b83923540a76
BLAKE2b-256 9b1361f2ca441b3d7948a57beef437cc03153b37d733a543bb16c104b794951e

See more details on using hashes here.

File details

Details for the file amplpy-0.15.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amplpy-0.15.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 157d98ffb8457f8de15d4e2c146636cd9db5d8c0eac0aaae439d3e7d47bcdb59
MD5 3bb402cd44f33e499bc4167a1e31b798
BLAKE2b-256 c41dbb8b17b2f1786a9bd7530aade109b36a37e34e9d82c0aac2998e5e05f82b

See more details on using hashes here.

File details

Details for the file amplpy-0.15.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for amplpy-0.15.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 217d6fcbeebc6ea3e4cbb9bea8ed7e96bc365194bedddcd66e0dd831701d93f4
MD5 a16408cd79e7fdd5d63844f6dd3f3d57
BLAKE2b-256 5f11fb99409f34468c7fcbccfdc5b3c3454b4c231200b5fbd0cc91b6cc22d87e

See more details on using hashes here.

File details

Details for the file amplpy-0.15.2-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for amplpy-0.15.2-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 a317bd47cadb427ef7baf1c9ff3e322cd33b2d797f397e3a9c46a3e0390984fc
MD5 a2b2c595a6b7346c5cc1ed54407266fb
BLAKE2b-256 fb88d85600ba82e55fe09700ea2869809d370e5bab504c6521e7fd9d5ebe39fc

See more details on using hashes here.

File details

Details for the file amplpy-0.15.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: amplpy-0.15.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.6

File hashes

Hashes for amplpy-0.15.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 d29821fc3cf524f77a91757a717ee77576da44032b1206d33b3d955e0921c349
MD5 bf03e7e292074de3dd195904c9507264
BLAKE2b-256 912195ee5d6db059a13589d9a99aa9750f1935de057d74a62d885d91a8f66aaf

See more details on using hashes here.

File details

Details for the file amplpy-0.15.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for amplpy-0.15.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 99e7751c2128b432ff975f3ce29ac6abb1308dd1d86519c1a8e5b794b32ac52d
MD5 d420e824fd37dac46f0c850d76bf8748
BLAKE2b-256 b481502baba37af18eedda8e99c5a076d46eb6c10d2b1d02ad2350ec5c5768de

See more details on using hashes here.

File details

Details for the file amplpy-0.15.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for amplpy-0.15.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 de6170fb2b7ccff165eb015ec52e073b958d02c1b32ed456cd33461c58e834b6
MD5 2656d8aee08f4a7811c84b24a31174b3
BLAKE2b-256 8a73164b4583bb2213a9a60430c8105be0726fd142e416c836d13037709232e7

See more details on using hashes here.

File details

Details for the file amplpy-0.15.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for amplpy-0.15.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 22b45da13e2e1aa64be652bb13d32ac100b09923cf3aeceb9fd5ba9d05ebc231
MD5 3ebe974454df10be2609bf4497d13df7
BLAKE2b-256 81cae17f59cf0c8901771040989eaaa85d06d1e5019f90af19f6bebccbc73f53

See more details on using hashes here.

File details

Details for the file amplpy-0.15.2-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for amplpy-0.15.2-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 3ddf933c6f4ebeb92a85852e7e0acd5ed49f90e34a331d81709d0070bd69a90a
MD5 1e7b04ba92ffe68650f16d84365fb153
BLAKE2b-256 17aefe269da53d3ba7d0c921ca696635d81282e9032ac382455dc165fb341ef1

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page