Skip to main content

Python API for AMPL

Project description

AMPLPY: Python API for AMPL

# Install Python API for AMPL
$ python -m pip install amplpy --upgrade

# Install solver modules (e.g., HiGHS, CBC, Gurobi)
$ python -m amplpy.modules install highs cbc gurobi

# Activate your license (e.g., free https://ampl.com/ce license)
$ python -m amplpy.modules activate <license-uuid>

# Import in Python
$ python
>>> from amplpy import AMPL
>>> ampl = AMPL() # instantiate AMPL object
# Minimal example:
from amplpy import AMPL
import pandas as pd
ampl = AMPL()
ampl.eval(r"""
    set A ordered;
    param S{A, A};
    param lb default 0;
    param ub default 1;
    var w{A} >= lb <= ub;
    minimize portfolio_variance:
        sum {i in A, j in A} w[i] * S[i, j] * w[j];
    s.t. portfolio_weights:
        sum {i in A} w[i] = 1;
""")
tickers, cov_matrix = # ... pre-process data in Python
ampl.set["A"] = tickers
ampl.param["S"] = pd.DataFrame(cov_matrix, index=tickers, columns=tickers)
ampl.solve(solver="gurobi", gurobi_options="outlev=1")
assert ampl.solve_result == "solved"
sigma = ampl.get_value("sqrt(sum {i in A, j in A} w[i] * S[i, j] * w[j])")
print(f"Volatility: {sigma*100:.1f}%")
# ... post-process solution in Python

[Documentation] [AMPL Modules for Python] [Available on Google Colab] [AMPL Community Edition]

amplpy is an interface that allows developers to access the features of AMPL from within Python. For a quick introduction to AMPL see Quick Introduction to AMPL.

In the same way that AMPL’s syntax matches naturally the mathematical description of the model, the input and output data matches naturally Python lists, sets, dictionaries, pandas and numpy objects.

All model generation and solver interaction is handled directly by AMPL, which leads to great stability and speed; the library just acts as an intermediary, and the added overhead (in terms of memory and CPU usage) depends mostly on how much data is sent and read back from AMPL, the size of the expanded model as such is irrelevant.

With amplpy you can model and solve large scale optimization problems in Python with the performance of heavily optimized C code without losing model readability. The same model can be deployed on applications built on different languages by just switching the API used.

Documentation

Repositories:

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

amplpy-0.16.0.tar.gz (1.7 MB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

amplpy-0.16.0-cp314-cp314t-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.14tWindows x86-64

amplpy-0.16.0-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.14tmanylinux: glibc 2.17+ x86-64manylinux: glibc 2.28+ x86-64

amplpy-0.16.0-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl (2.5 MB view details)

Uploaded CPython 3.14tmanylinux: glibc 2.17+ ARM64manylinux: glibc 2.28+ ARM64

amplpy-0.16.0-cp314-cp314t-macosx_10_15_x86_64.whl (861.4 kB view details)

Uploaded CPython 3.14tmacOS 10.15+ x86-64

amplpy-0.16.0-cp314-cp314t-macosx_10_15_universal2.whl (1.2 MB view details)

Uploaded CPython 3.14tmacOS 10.15+ universal2 (ARM64, x86-64)

amplpy-0.16.0-cp314-cp314-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.14Windows x86-64

amplpy-0.16.0-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.17+ x86-64manylinux: glibc 2.28+ x86-64

amplpy-0.16.0-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.17+ ARM64manylinux: glibc 2.28+ ARM64

amplpy-0.16.0-cp314-cp314-macosx_10_15_x86_64.whl (843.9 kB view details)

Uploaded CPython 3.14macOS 10.15+ x86-64

amplpy-0.16.0-cp314-cp314-macosx_10_15_universal2.whl (1.1 MB view details)

Uploaded CPython 3.14macOS 10.15+ universal2 (ARM64, x86-64)

amplpy-0.16.0-cp313-cp313-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.13Windows x86-64

amplpy-0.16.0-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64manylinux: glibc 2.28+ x86-64

amplpy-0.16.0-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ ARM64manylinux: glibc 2.28+ ARM64

amplpy-0.16.0-cp313-cp313-macosx_10_13_x86_64.whl (842.7 kB view details)

Uploaded CPython 3.13macOS 10.13+ x86-64

amplpy-0.16.0-cp313-cp313-macosx_10_13_universal2.whl (1.1 MB view details)

Uploaded CPython 3.13macOS 10.13+ universal2 (ARM64, x86-64)

amplpy-0.16.0-cp312-cp312-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.12Windows x86-64

amplpy-0.16.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64manylinux: glibc 2.28+ x86-64

amplpy-0.16.0-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARM64manylinux: glibc 2.28+ ARM64

amplpy-0.16.0-cp312-cp312-macosx_10_13_x86_64.whl (843.7 kB view details)

Uploaded CPython 3.12macOS 10.13+ x86-64

amplpy-0.16.0-cp312-cp312-macosx_10_13_universal2.whl (1.1 MB view details)

Uploaded CPython 3.12macOS 10.13+ universal2 (ARM64, x86-64)

amplpy-0.16.0-cp311-cp311-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.11Windows x86-64

amplpy-0.16.0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64manylinux: glibc 2.28+ x86-64

amplpy-0.16.0-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl (2.4 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64manylinux: glibc 2.28+ ARM64

amplpy-0.16.0-cp311-cp311-macosx_10_9_x86_64.whl (847.5 kB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

amplpy-0.16.0-cp311-cp311-macosx_10_9_universal2.whl (1.1 MB view details)

Uploaded CPython 3.11macOS 10.9+ universal2 (ARM64, x86-64)

amplpy-0.16.0-cp310-cp310-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.10Windows x86-64

amplpy-0.16.0-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64manylinux: glibc 2.28+ x86-64

amplpy-0.16.0-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64manylinux: glibc 2.28+ ARM64

amplpy-0.16.0-cp310-cp310-macosx_10_9_x86_64.whl (839.6 kB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

amplpy-0.16.0-cp310-cp310-macosx_10_9_universal2.whl (1.1 MB view details)

Uploaded CPython 3.10macOS 10.9+ universal2 (ARM64, x86-64)

amplpy-0.16.0-cp39-cp39-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.9Windows x86-64

amplpy-0.16.0-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64manylinux: glibc 2.28+ x86-64

amplpy-0.16.0-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64manylinux: glibc 2.28+ ARM64

amplpy-0.16.0-cp39-cp39-macosx_10_9_x86_64.whl (840.3 kB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

amplpy-0.16.0-cp39-cp39-macosx_10_9_universal2.whl (1.1 MB view details)

Uploaded CPython 3.9macOS 10.9+ universal2 (ARM64, x86-64)

amplpy-0.16.0-cp38-cp38-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.8Windows x86-64

amplpy-0.16.0-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64manylinux: glibc 2.28+ x86-64

amplpy-0.16.0-cp38-cp38-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARM64manylinux: glibc 2.28+ ARM64

amplpy-0.16.0-cp38-cp38-macosx_10_9_x86_64.whl (855.7 kB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

amplpy-0.16.0-cp38-cp38-macosx_10_9_universal2.whl (1.2 MB view details)

Uploaded CPython 3.8macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file amplpy-0.16.0.tar.gz.

File metadata

  • Download URL: amplpy-0.16.0.tar.gz
  • Upload date:
  • Size: 1.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.6

File hashes

Hashes for amplpy-0.16.0.tar.gz
Algorithm Hash digest
SHA256 75e09762557ededf8a5fcb035f98460d8fa6c063eb9e43b10434da072605f57e
MD5 95b41c37f992e4a176326d155af89e1a
BLAKE2b-256 db9fc7cce8efc4c74a9e4909fb68f1156c36acc1a511c628e64f7984507c1f7f

See more details on using hashes here.

File details

Details for the file amplpy-0.16.0-cp314-cp314t-win_amd64.whl.

File metadata

  • Download URL: amplpy-0.16.0-cp314-cp314t-win_amd64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.14t, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.6

File hashes

Hashes for amplpy-0.16.0-cp314-cp314t-win_amd64.whl
Algorithm Hash digest
SHA256 83a88aa07ef078f5f60efa8adf825d44981a7ac7720a3006ace2fdeeeec0b878
MD5 71f1e4432408c5b99c05d538ce1c61fe
BLAKE2b-256 e548635cdc2709b4767f6a6dad4dc7fa8fc282528a9ed10f393f83d2f7551e6b

See more details on using hashes here.

File details

Details for the file amplpy-0.16.0-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for amplpy-0.16.0-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 5d47061e85e27abc53ffb682e5fefc196a26dc45f6a752fb8df2479583fbf04b
MD5 5e6a153ad23d529ed54835365a708fab
BLAKE2b-256 290ac4d0a7ef1d28e04fba9c5b974ef624f201976a71eb5102fe77fd673369e1

See more details on using hashes here.

File details

Details for the file amplpy-0.16.0-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for amplpy-0.16.0-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 cee276cd8260b78867beffc789d17b8344f18628ebb2ce8b8ac86d8af7cc4f46
MD5 c4ff978394b3bfa792a0c9452cb06ac2
BLAKE2b-256 cccc444870f607266ad8631aff2b4e468c6cac60bee273e8217497f75391964c

See more details on using hashes here.

File details

Details for the file amplpy-0.16.0-cp314-cp314t-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for amplpy-0.16.0-cp314-cp314t-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 e6265662d85d5937ede5c7a268e97e7589ad474e81392545d0414a25a8e99856
MD5 509700b66317bc5b70d80a98a4b2ce43
BLAKE2b-256 c5fbb7a477a8e1889ff73c0f45f7502cbbbfbf0290e62b91b8a4292f1267a19f

See more details on using hashes here.

File details

Details for the file amplpy-0.16.0-cp314-cp314t-macosx_10_15_universal2.whl.

File metadata

File hashes

Hashes for amplpy-0.16.0-cp314-cp314t-macosx_10_15_universal2.whl
Algorithm Hash digest
SHA256 0cc484453a4a5fcddbf70f33b26e3409ac2d76bd7c3fb0a070c9c85ae8de01c4
MD5 9c6f99f15401bee27cb7856f7e65e9c6
BLAKE2b-256 895d7243759bbb4dd979ee38d6226c728eef3eebf337819a409b857b5b79539d

See more details on using hashes here.

File details

Details for the file amplpy-0.16.0-cp314-cp314-win_amd64.whl.

File metadata

  • Download URL: amplpy-0.16.0-cp314-cp314-win_amd64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.14, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.6

File hashes

Hashes for amplpy-0.16.0-cp314-cp314-win_amd64.whl
Algorithm Hash digest
SHA256 26b02cdfa850c350b0250f2629ebbd7cf05279fb2bce4ad0389de9c28d622e32
MD5 21326752d5f6c44b92e1e9d510390f07
BLAKE2b-256 b33eb9f45c983fef9645f79649ec37b03992cb9669e6aed6bbec156e5b31fe7e

See more details on using hashes here.

File details

Details for the file amplpy-0.16.0-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for amplpy-0.16.0-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 d433d9a7b751d8f52d101a80548fbbf32f28454db6de7d5bd21d4fd3b68dfa71
MD5 abe439ba01b671d2697e33267b814d18
BLAKE2b-256 394859cbf8a71e9a2cf9bfbfa2f19cfc3dedceb612a56a361d2d05f58bf787ce

See more details on using hashes here.

File details

Details for the file amplpy-0.16.0-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for amplpy-0.16.0-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 047b89c45c0f85c4137072eb03bfcb1051a1e621b8494c8362a3173bbf341713
MD5 49c2bb81624736c22e30a77531c129d0
BLAKE2b-256 e4c1c4ab0d5473999a9ee97011c733c7bfece7aadec98859a650d808e6ae14f2

See more details on using hashes here.

File details

Details for the file amplpy-0.16.0-cp314-cp314-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for amplpy-0.16.0-cp314-cp314-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 eefe23fcf3d68c604f74277b457fd927e065d918f5575cedc86384fc1f70d4c2
MD5 4248e033518053bd4120e357040bce1d
BLAKE2b-256 ca13d799396e7977c00a9b282a0f41229e9b55710de85836f7f0fdbaa2126ccd

See more details on using hashes here.

File details

Details for the file amplpy-0.16.0-cp314-cp314-macosx_10_15_universal2.whl.

File metadata

File hashes

Hashes for amplpy-0.16.0-cp314-cp314-macosx_10_15_universal2.whl
Algorithm Hash digest
SHA256 3e1bbb9dec1288443ab28014319fc8687108d97c42c7eef680dadec3f8d6bb4c
MD5 6ffbd30aa504b07b2acec2def3b53b8c
BLAKE2b-256 dd0f2dc122ef77ac169030cc3ae909219ad3ee9acfa8aa064461daf5da39be0f

See more details on using hashes here.

File details

Details for the file amplpy-0.16.0-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: amplpy-0.16.0-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.6

File hashes

Hashes for amplpy-0.16.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 8638f6b0553e9efb9a3b0a16f84c3f7b83435de782ad06048dcc79125d94c4ba
MD5 221887eb75ea6b281ce38a70d0089097
BLAKE2b-256 4490b4f77c93898967fd97cbed5132f0fda8cb158f6874f8070f87a086b8ac1a

See more details on using hashes here.

File details

Details for the file amplpy-0.16.0-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for amplpy-0.16.0-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 f34178547d3a5f1fb6fd3d39c8285fa88857f3badb99e0dceff96425f80cc083
MD5 9f59272b3d584abd2959af3b12caa6cc
BLAKE2b-256 04a7eacc622ef164c195c6ec77ad79162c9cd7ce0e7957711a31d156ae33cd23

See more details on using hashes here.

File details

Details for the file amplpy-0.16.0-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for amplpy-0.16.0-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 63f90b52d4c2572321af45cfff22a4f38c9ba5141adf3b262b3e9e292315a621
MD5 431e8527789ff7c1b2dec6b1e26438df
BLAKE2b-256 c457263f624e9b59304d7964ed4ed696c1de66922a6b6c6a8967c3345b65e636

See more details on using hashes here.

File details

Details for the file amplpy-0.16.0-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for amplpy-0.16.0-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 7cd5dce0f34b0b80a25185789ef3611a0daccc0721e7942dbd9ae5cc68f14940
MD5 131ecf3187e92c41e6b7b6244f42636e
BLAKE2b-256 2e1283d448cca206cb2e3c15e05e8aaecd96c404e008034b2cd771ba1717c701

See more details on using hashes here.

File details

Details for the file amplpy-0.16.0-cp313-cp313-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for amplpy-0.16.0-cp313-cp313-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 115a63bded32f066802c877fcf94124706ef6fef5d3a1337dffe0d0b4312148a
MD5 71e411125223a290f55e40bf9b4b5143
BLAKE2b-256 bbf119bdbe796cb57894bd1b258e4d84a279a412c69c86004449ae9e2c6960b2

See more details on using hashes here.

File details

Details for the file amplpy-0.16.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: amplpy-0.16.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.6

File hashes

Hashes for amplpy-0.16.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 99688e8fd0839866a6f39c4ffa5ca54340fdedba5174462071359be658e0c154
MD5 f922679da067c282eb9fe64542a90d1a
BLAKE2b-256 cf0731f6c71135d89cfe3ac2f7c045464f9f2062dbdbcb187e340f3fb24683f8

See more details on using hashes here.

File details

Details for the file amplpy-0.16.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for amplpy-0.16.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 82bbe04c52be1689974dc19dc5011744baf9ad31af6e4fb70d3fe7af005c7550
MD5 0dc8cb5a069151430989f3981041beee
BLAKE2b-256 591d95b7dd1b7adc3f3da159af3426e62e27ae4df1259dc9812e8d6ce8405bdf

See more details on using hashes here.

File details

Details for the file amplpy-0.16.0-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for amplpy-0.16.0-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 42088e3f08d7a4a88bf081a088df5bca9c372634789dbe6951198ceaf9e4b7fe
MD5 1c0b7fc8ff9db7ed3682ee8bbde8bc09
BLAKE2b-256 5ac3b4fa9a67a8eb2b32c9b0bf0ea5edc7eb9de08b38a0ffb10e7259ddd8bd18

See more details on using hashes here.

File details

Details for the file amplpy-0.16.0-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for amplpy-0.16.0-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 5e61326e017a5b4ceac22e163263ecee1635e962c1a6d533e892ca6082f53d10
MD5 4f9de4d5b2ee9409aeb2056f1b0e5fc3
BLAKE2b-256 f2745f8a0509fc93f09ead5c956ad247a2956192510b216383419d5becd79339

See more details on using hashes here.

File details

Details for the file amplpy-0.16.0-cp312-cp312-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for amplpy-0.16.0-cp312-cp312-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 cc8dfeb5b43ac8e5a738bccc32f75ec3d06e028f60423fd69d101a5431e2cfef
MD5 5101b4dfb43b8a9a320b5acdbba1cb12
BLAKE2b-256 61e00a89387c831cb70396cf96c774e95a4e350b51ea425de240dfa4f06b8d7a

See more details on using hashes here.

File details

Details for the file amplpy-0.16.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: amplpy-0.16.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.6

File hashes

Hashes for amplpy-0.16.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 c289beea650c66c6833df27fce5e8d4c87e2c0fb79ac1b36f73d995c52746d25
MD5 4c60d1b64d7b6c181717558a6f0882a5
BLAKE2b-256 e2146f2046539babe6fb3e14b5bd02898cf1bd3c141a29a8595ebe54b8f16dcc

See more details on using hashes here.

File details

Details for the file amplpy-0.16.0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for amplpy-0.16.0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 ae3ea3d171e8a39ad52a63536d2f2c328e12d98c73f211e0849dde63ff1ff5c4
MD5 e43407f979a0fc0cb0e22497534775a0
BLAKE2b-256 b80ab693ace4c0476d2d7926806f74770bf42e437342220fe63fb4f3674a7580

See more details on using hashes here.

File details

Details for the file amplpy-0.16.0-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for amplpy-0.16.0-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 dd9e1447f935f9747e57005d105cc5366f2dbfb5f782b1c4f36e2bd13c18068a
MD5 83b40a8742b40400f19611d1e8d95891
BLAKE2b-256 1c3085a2c156e7d042f9f431831a9029df6a57d093b82983605c497b5a12c307

See more details on using hashes here.

File details

Details for the file amplpy-0.16.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for amplpy-0.16.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 695aaf9a17df3b04c3f7a6899051f515d3fda47da4c4ddb1bb429e4119624aec
MD5 e07b8a80892b3a9351f730311c187b68
BLAKE2b-256 b2f72772223d5f6104d15723695e4005db5ca4ad6bd8c32855563989b254bc50

See more details on using hashes here.

File details

Details for the file amplpy-0.16.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for amplpy-0.16.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 e6511f96bd0f1068c047abf9470321bf225994e0471797b845a8d00e88c21e96
MD5 d98cb67c17b6ba06e6f2320e30fe8518
BLAKE2b-256 462626af9699ee71a07bd03649d72b7169168271b517f056c76f30e5dae525b6

See more details on using hashes here.

File details

Details for the file amplpy-0.16.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: amplpy-0.16.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.6

File hashes

Hashes for amplpy-0.16.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 70b5db8964d7efc71e51c0efb7425db814913d7acc219f72bd5fa84bcc1072ec
MD5 66226035ab6bf56ff9716625143eae7d
BLAKE2b-256 a880899b4b5decc0d3cd407e74b0e859e3cfc924f31fd5c520eedafa362be784

See more details on using hashes here.

File details

Details for the file amplpy-0.16.0-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for amplpy-0.16.0-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 9dcfc5f90265ec28e59b32ddf8d2c7cefd3823d93cb0c8fd5171ea5a4457a2de
MD5 e5eac5b131fa8c3b9498a489efb92460
BLAKE2b-256 3eb0ace26328a73e4da4727595d56ec10e9c564cab56f5075d65e6578a0840a3

See more details on using hashes here.

File details

Details for the file amplpy-0.16.0-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for amplpy-0.16.0-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 114dcc9f914ce7712ca94c7a05211ed8f4b623eb83ba8aa117b450f90052d71b
MD5 b65124ab7080bccc2999c7c2147a2e5e
BLAKE2b-256 ad933b2efacd84288a56669bafb0fc8f322e12b70e82725b9bd5afb5f96c4fd4

See more details on using hashes here.

File details

Details for the file amplpy-0.16.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for amplpy-0.16.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0188e965e1653f9af165d8c8410816690a1d30e663d6f4341388d006fb0bd506
MD5 519550680582b552a44618c539b2d67a
BLAKE2b-256 4e4cd69aab782a83dcf7654bda8417a90747f96203ea1e7ce11dee17b0083018

See more details on using hashes here.

File details

Details for the file amplpy-0.16.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for amplpy-0.16.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 a1fc2ad0a6fae341061be40e1e9cb77d1aa7f8fea1dc50081d0a4c6b84581bc9
MD5 f43cb156aa409cf6ef4332bd65bd6bf1
BLAKE2b-256 ab3d5e1e3ffd27cde21634ba30a80422b8b646cac3f61ebb2fd06f7ee79db1bf

See more details on using hashes here.

File details

Details for the file amplpy-0.16.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: amplpy-0.16.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.6

File hashes

Hashes for amplpy-0.16.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 051112515738f07c459997113cee174c84e081d40591208f07c940dc0e8c25b2
MD5 d64a82e47dd41627a29f0b278cbe40e7
BLAKE2b-256 a129c1df335cd4bc541df87d5bd76c5e4469662353d3183debb0ab1b26f3ed48

See more details on using hashes here.

File details

Details for the file amplpy-0.16.0-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for amplpy-0.16.0-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 2bfd458887f43e1df37b1ca9be6a3ed323a011265093bc0329e02b0e403087e1
MD5 79d3baaa3f087fe9330566d8511a42dc
BLAKE2b-256 7c4f2d506f6ce0d75d5cab51709ab152625b9ed6f1d6059bc48457b5c6ee2d73

See more details on using hashes here.

File details

Details for the file amplpy-0.16.0-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for amplpy-0.16.0-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 9d923a23ae01a0a85c1032fde54787cd4395828461f365331a619b7049636dae
MD5 eb2daae6f5c889df3c8ecc4c2ce29b4a
BLAKE2b-256 8870c7cfa4d76ced3327ede080f33a9871041ae6a379eecf847d613ceb66d20c

See more details on using hashes here.

File details

Details for the file amplpy-0.16.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for amplpy-0.16.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 abd2cc851d18bf73e51657a688bbba9d0ad0fd323fe50c381106279424b275f3
MD5 2edd37191874fc2bfbbdb94a38127f5d
BLAKE2b-256 8ca569cdaa3102f229be7fa63cbee5db315156c8ad3ed74ac5ff74829471e579

See more details on using hashes here.

File details

Details for the file amplpy-0.16.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for amplpy-0.16.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 f44261e4a24ae365c85600ba62404eb68978505c28325831f1edc10b9ed2496a
MD5 db4f0073e4159d3d72154015b6136069
BLAKE2b-256 be1a8affb93f52e16c494ed772bc5d3bb72b37ed4831faaccf17e513d0ac906a

See more details on using hashes here.

File details

Details for the file amplpy-0.16.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: amplpy-0.16.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.6

File hashes

Hashes for amplpy-0.16.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 5a7ee0f2574b512d41db505714c3b7a35db7e7145b94e091ae1e5b31b6eef188
MD5 fbf2bd63daa6a9b880c06c75e6d3a1f9
BLAKE2b-256 36ad8bf765d38a22b9ec88a3b3f62a5d2c7ae322d8d632e55d3dafeca06f83af

See more details on using hashes here.

File details

Details for the file amplpy-0.16.0-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for amplpy-0.16.0-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 4cfc0123d819f03f92f1c2dd847142c7aeb3a610d21194dd3609b6767d2c5bb9
MD5 f430e59bc9368a6fb9c95ce36fcc7acf
BLAKE2b-256 2271209b3db9c33375183964cde532b63a62001604d42edc059b20439671bacb

See more details on using hashes here.

File details

Details for the file amplpy-0.16.0-cp38-cp38-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for amplpy-0.16.0-cp38-cp38-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 836074d119fb14bd56ef960080e2fd7090be96507069d54ed305827daf6bbd22
MD5 ff8ab2a9f9cc3622ab2b290d557f9932
BLAKE2b-256 714b190b7ee4bffc19534e744904ecf9acb7922e4c0492bb3cc95189c18871e2

See more details on using hashes here.

File details

Details for the file amplpy-0.16.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for amplpy-0.16.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d37b16cecac42efcd98a22c5c805bcc108e329ec1ef79049f01da08e4a982ed3
MD5 33b00531126b3a2ec2755a38cd8e320a
BLAKE2b-256 6a43c6354a5c9f897a0809e5f370dde8b2688bdab364ea9cec06f76f9e2fcae9

See more details on using hashes here.

File details

Details for the file amplpy-0.16.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for amplpy-0.16.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 f8ff956c4f3b10b236d0fb001d11c31394d0dd713f8d9a5f11d9ff7945874d0f
MD5 f8c1a6c5ccb16490a7b726e7731186d1
BLAKE2b-256 47fa497413e0ba46167613c3a31a7c01185d5f6fd3d8b7ff7ae5fcf165290eee

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page