Skip to main content

Python API for AMPL

Project description

AMPL API is an interface that allows developers to access the features of the AMPL interpreter from within a programming language. All model generation and solver interaction is handled directly by AMPL, which leads to great stability and speed; the library just acts as an intermediary, and the added overhead (in terms of memory and CPU usage) depends mostly on how much data is read back from AMPL, the size of the model as such is irrelevant. Functions for directly assigning data to AMPL parameters and sets are provided, which can be used instead of the normal AMPL data reading procedures. AMPL API has been written with usability in mind, and it is easy to access its functionalities from C++, Java, C#, MATLAB and Python.

The AMPL API can function as an add-on to any existing AMPL installation. If you do not yet have an AMPL installation on the computer where you will be working with the API, see our demo page or trial page to download a working version that can be installed quickly.

Documentation:

Repositories:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

amplpy-0.3.3.tar.gz (8.6 MB view details)

Uploaded Source

Built Distributions

amplpy-0.3.3-cp36-cp36m-win_amd64.whl (9.1 MB view details)

Uploaded CPython 3.6m Windows x86-64

amplpy-0.3.3-cp36-cp36m-win32.whl (9.0 MB view details)

Uploaded CPython 3.6m Windows x86

amplpy-0.3.3-cp36-cp36m-manylinux1_x86_64.whl (11.3 MB view details)

Uploaded CPython 3.6m

amplpy-0.3.3-cp36-cp36m-manylinux1_i686.whl (11.4 MB view details)

Uploaded CPython 3.6m

amplpy-0.3.3-cp36-cp36m-macosx_10_6_intel.whl (9.8 MB view details)

Uploaded CPython 3.6m macOS 10.6+ intel

amplpy-0.3.3-cp35-cp35m-win_amd64.whl (9.1 MB view details)

Uploaded CPython 3.5m Windows x86-64

amplpy-0.3.3-cp35-cp35m-win32.whl (9.0 MB view details)

Uploaded CPython 3.5m Windows x86

amplpy-0.3.3-cp35-cp35m-manylinux1_x86_64.whl (11.3 MB view details)

Uploaded CPython 3.5m

amplpy-0.3.3-cp35-cp35m-manylinux1_i686.whl (11.4 MB view details)

Uploaded CPython 3.5m

amplpy-0.3.3-cp35-cp35m-macosx_10_6_intel.whl (9.8 MB view details)

Uploaded CPython 3.5m macOS 10.6+ intel

amplpy-0.3.3-cp34-cp34m-win_amd64.whl (9.1 MB view details)

Uploaded CPython 3.4m Windows x86-64

amplpy-0.3.3-cp34-cp34m-win32.whl (9.0 MB view details)

Uploaded CPython 3.4m Windows x86

amplpy-0.3.3-cp34-cp34m-manylinux1_x86_64.whl (11.3 MB view details)

Uploaded CPython 3.4m

amplpy-0.3.3-cp34-cp34m-manylinux1_i686.whl (11.4 MB view details)

Uploaded CPython 3.4m

amplpy-0.3.3-cp34-cp34m-macosx_10_6_intel.whl (9.8 MB view details)

Uploaded CPython 3.4m macOS 10.6+ intel

amplpy-0.3.3-cp33-cp33m-win_amd64.whl (9.1 MB view details)

Uploaded CPython 3.3m Windows x86-64

amplpy-0.3.3-cp33-cp33m-win32.whl (9.0 MB view details)

Uploaded CPython 3.3m Windows x86

amplpy-0.3.3-cp33-cp33m-manylinux1_x86_64.whl (11.3 MB view details)

Uploaded CPython 3.3m

amplpy-0.3.3-cp33-cp33m-manylinux1_i686.whl (11.4 MB view details)

Uploaded CPython 3.3m

amplpy-0.3.3-cp27-cp27mu-manylinux1_x86_64.whl (11.3 MB view details)

Uploaded CPython 2.7mu

amplpy-0.3.3-cp27-cp27mu-manylinux1_i686.whl (11.4 MB view details)

Uploaded CPython 2.7mu

amplpy-0.3.3-cp27-cp27m-win_amd64.whl (9.1 MB view details)

Uploaded CPython 2.7m Windows x86-64

amplpy-0.3.3-cp27-cp27m-win32.whl (9.0 MB view details)

Uploaded CPython 2.7m Windows x86

amplpy-0.3.3-cp27-cp27m-manylinux1_x86_64.whl (11.3 MB view details)

Uploaded CPython 2.7m

amplpy-0.3.3-cp27-cp27m-manylinux1_i686.whl (11.4 MB view details)

Uploaded CPython 2.7m

amplpy-0.3.3-cp27-cp27m-macosx_10_6_intel.whl (9.8 MB view details)

Uploaded CPython 2.7m macOS 10.6+ intel

File details

Details for the file amplpy-0.3.3.tar.gz.

File metadata

  • Download URL: amplpy-0.3.3.tar.gz
  • Upload date:
  • Size: 8.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for amplpy-0.3.3.tar.gz
Algorithm Hash digest
SHA256 6eae094bd42fb02fc914499fcf231ae3577fc07ebc6050f41dfeeba67963f8c3
MD5 07554cb5ffd3992f6c30f920598fb0dc
BLAKE2b-256 e094c286b484649b3f6446a994bc7a0a4498aacb22dc459c78130239f2dda46e

See more details on using hashes here.

File details

Details for the file amplpy-0.3.3-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for amplpy-0.3.3-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 bff5280ee64c78038194c8a7fea0ead2901b9b314a169ed1c4107b4428606dca
MD5 691a919ce49be93b275da3fd45e3a024
BLAKE2b-256 e5440616315fc44b7351ef70cde68b4ecf7403f78d42aeb56cff98076b74d5cd

See more details on using hashes here.

File details

Details for the file amplpy-0.3.3-cp36-cp36m-win32.whl.

File metadata

File hashes

Hashes for amplpy-0.3.3-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 710e64a3af0c04433d3c6616b09a0acc9737257d789b5f5ad5bd1ff550d03b47
MD5 d7f0edb7ef548799e231bedf4e31a255
BLAKE2b-256 97e9c5ff675cb10b6368b4e00a8f6ae93b486bbc7afdd094aae247e9d70ebb27

See more details on using hashes here.

File details

Details for the file amplpy-0.3.3-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for amplpy-0.3.3-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 6db7a810b8f4704fa22b3e31cf700baff79f3f2dd4272f5b0edeb73d1230af31
MD5 77c3a53e118c844092fdd9eff75e904b
BLAKE2b-256 f82d32f456c68b721d8aa1e112e870f4191cb45519a98e68eef4501342852cf0

See more details on using hashes here.

File details

Details for the file amplpy-0.3.3-cp36-cp36m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for amplpy-0.3.3-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 1b9df244fc29965a501576dc62f2be08137374e0fc4a3e7edc646ded99a8c4d7
MD5 9dcf494e1435033039d5458933359d36
BLAKE2b-256 7b85591f991a037746fba871e7666786f7829f9ca83871b2b502cd53df15e03d

See more details on using hashes here.

File details

Details for the file amplpy-0.3.3-cp36-cp36m-macosx_10_6_intel.whl.

File metadata

File hashes

Hashes for amplpy-0.3.3-cp36-cp36m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 51333aeebd4b6d3edd1c69532dc747f6d131c4bae71d21623cd0e791b8e1f14d
MD5 2bed75968bc5654855786af8d5026dd3
BLAKE2b-256 d0364b13f1fd973ee8bb22d57e0e1be159d627a3273c00609d2d23c84e805212

See more details on using hashes here.

File details

Details for the file amplpy-0.3.3-cp35-cp35m-win_amd64.whl.

File metadata

File hashes

Hashes for amplpy-0.3.3-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 d6e810e289e1d8e5776ce5f46b639e933e28f3f2096d1db65a1eb71ed25a065b
MD5 114fee7745a8863ebb6210113f741ac8
BLAKE2b-256 0304fcd5bc09eb340a72e01de0790f5590b816acaa874540796c2536ea0910d4

See more details on using hashes here.

File details

Details for the file amplpy-0.3.3-cp35-cp35m-win32.whl.

File metadata

File hashes

Hashes for amplpy-0.3.3-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 7adaceb1affd157d0280abc30399c757504c5234f11509d7f4da3ea27c3672df
MD5 23849e405cfb64727be8535afaa961ee
BLAKE2b-256 b027df18f380837d72e159b96e6ee2a4274064f7ca0e09a9640057f278557224

See more details on using hashes here.

File details

Details for the file amplpy-0.3.3-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for amplpy-0.3.3-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 5a3343eb0aca942c83307a6c144a2e49627c5065936054aa5e85be847dbe5c11
MD5 1cbc352d6d80ab569116de7a74436378
BLAKE2b-256 59de310df494f034e8c042ce29d1f93294fb9c9f2f007ed4cd73493e0279534e

See more details on using hashes here.

File details

Details for the file amplpy-0.3.3-cp35-cp35m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for amplpy-0.3.3-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 d33dc34ce89031065a0b5e20f1ff986c5c5295af7dd6767f575f2ab8a95c03e7
MD5 6241cbb9231dbf77e1dd1d3c1a5efef7
BLAKE2b-256 4b9477995b5d6faa9a45dbe0b9c016fe286c3113740d06b6b7874e996454b370

See more details on using hashes here.

File details

Details for the file amplpy-0.3.3-cp35-cp35m-macosx_10_6_intel.whl.

File metadata

File hashes

Hashes for amplpy-0.3.3-cp35-cp35m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 10328967d49da3c65ed5b253ff327d6f2ac97f7c22879afadcffa1c1fcb3590a
MD5 ee7c2d9bbe751fe81f4eedadb841a3ad
BLAKE2b-256 71084e045e90136e259a32c8d0fe546c0f1da97686160f3fdfb0dc34bb60ad08

See more details on using hashes here.

File details

Details for the file amplpy-0.3.3-cp34-cp34m-win_amd64.whl.

File metadata

File hashes

Hashes for amplpy-0.3.3-cp34-cp34m-win_amd64.whl
Algorithm Hash digest
SHA256 026d1b02b00642637b1c5cdf2a20109b70ee7f457d101a048bea3d7767f72724
MD5 bf162eb039de6d1f154282e12ee07d71
BLAKE2b-256 ee1c5c514a01771c687b9323006b15928ce7111d815ff68fbf2da0610be3c086

See more details on using hashes here.

File details

Details for the file amplpy-0.3.3-cp34-cp34m-win32.whl.

File metadata

File hashes

Hashes for amplpy-0.3.3-cp34-cp34m-win32.whl
Algorithm Hash digest
SHA256 b9bfaa1fd67f92735e6db571dafee9b651ec95f7d5b56c5b70322e49c33ea186
MD5 9288947ace02d191d7cc909f4f236c39
BLAKE2b-256 26e9f8c99a4c93ea7d44b11cc0fda37181e03fa6293689936dfa9dc6d573487b

See more details on using hashes here.

File details

Details for the file amplpy-0.3.3-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for amplpy-0.3.3-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 576823bae099fc6173f41911a12aaf93c0384bee1550d2db8890ebfa7dd48448
MD5 acd8d79b754c72ec85f1c17fa3cc247d
BLAKE2b-256 150313ecb2430c7c6bf1c637be45f5d39e4d0e30f7703aa258c965898d5f325f

See more details on using hashes here.

File details

Details for the file amplpy-0.3.3-cp34-cp34m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for amplpy-0.3.3-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 03a0f3e3dc845d42d153b4c9a5978a6ffefcf2085482c5cc6a659bf3d092084a
MD5 00948b7a20dabb5bb0bf015c856c9d37
BLAKE2b-256 4fc7f0687305d0b584286921851d42d8d67035170e61d9e919246f59273765bc

See more details on using hashes here.

File details

Details for the file amplpy-0.3.3-cp34-cp34m-macosx_10_6_intel.whl.

File metadata

File hashes

Hashes for amplpy-0.3.3-cp34-cp34m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 1a807a1043f9cd0177073a017bf53394b5f2a562313a4696d66f610e14776221
MD5 10128e4f578a6063ac89a1a9115ea3e3
BLAKE2b-256 4ad9b64d365136f805952e406646fda444f852a6d8c633d2387e64d3a11fd155

See more details on using hashes here.

File details

Details for the file amplpy-0.3.3-cp33-cp33m-win_amd64.whl.

File metadata

File hashes

Hashes for amplpy-0.3.3-cp33-cp33m-win_amd64.whl
Algorithm Hash digest
SHA256 fcd10fcb3c7210c4d9727698c20fc2b3a47a4a94fe7b9edb75c4f9c5919f349b
MD5 972cc65786a25e5a257cda7696b5f39c
BLAKE2b-256 84ec08c7cdfd5e9e6bf3c767bfc6b6bb660a139a83f5c6f284991662069157ec

See more details on using hashes here.

File details

Details for the file amplpy-0.3.3-cp33-cp33m-win32.whl.

File metadata

File hashes

Hashes for amplpy-0.3.3-cp33-cp33m-win32.whl
Algorithm Hash digest
SHA256 ddb561555d1d85bb527231cc4e6ee9652e2c347b22c66ad7acb892577fd288bb
MD5 3e38f920636e505e822cd38af0f7e7df
BLAKE2b-256 27898ccd029dce800020dafd57964625253a578e0382d6be2d2689042d712c25

See more details on using hashes here.

File details

Details for the file amplpy-0.3.3-cp33-cp33m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for amplpy-0.3.3-cp33-cp33m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 75d86c09de1257d6da34da16062967072aeb9bc97ef24b211ca46e26eaf026ee
MD5 988a701f705e2a417bd0daaa83c28425
BLAKE2b-256 93a63971291014bccf7fd59d2dae34925ac2c358f1cfe1d12e3abfb271f19912

See more details on using hashes here.

File details

Details for the file amplpy-0.3.3-cp33-cp33m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for amplpy-0.3.3-cp33-cp33m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 b4c69685c8a897774dee6dc50812148475ea92d73d6d2b8ea937aae9c05034bf
MD5 c8e3596ac06194d62c97aca16d9fb344
BLAKE2b-256 749d2efe679a8a2fcae2e4bc2be8d806aef91b4e08a37adac648ae499d637296

See more details on using hashes here.

File details

Details for the file amplpy-0.3.3-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for amplpy-0.3.3-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 7f6ea24140699cc58ef78fc40fff8a79f7c7b21647d68c4230438fd5c7208d16
MD5 307881a4553f675f6f23d3fd3025428d
BLAKE2b-256 a6ae43189aae713080257c0b9e144237b6a4444a0507f7baa44d431907bb5922

See more details on using hashes here.

File details

Details for the file amplpy-0.3.3-cp27-cp27mu-manylinux1_i686.whl.

File metadata

File hashes

Hashes for amplpy-0.3.3-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 c710e6c696679f2a4e5b21278b9da4264ff7913c5d517a429d3f5000c7747baf
MD5 defc9f2c025fc37839daee24d8c6bc3f
BLAKE2b-256 9c6c4ec44b23755fe9da881439827a21da0c9922a2b2a60d1d520743b64202d8

See more details on using hashes here.

File details

Details for the file amplpy-0.3.3-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for amplpy-0.3.3-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 d1c45c87782e468113d085317159910a1e75e21d9a0eb18e09ecfb6f827fbbf9
MD5 35478bc3ad670475fde35ea4e17f17c7
BLAKE2b-256 b58622d15316412262e8ce8603260300a39123994786208f6aa1ca92173e2b1c

See more details on using hashes here.

File details

Details for the file amplpy-0.3.3-cp27-cp27m-win32.whl.

File metadata

File hashes

Hashes for amplpy-0.3.3-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 669669a497ab8d99932454f6e4209b68694ff2677c1b83f4e180e28e7bbeac57
MD5 93ec1cd6a557faa8cf81d72ef9d165ae
BLAKE2b-256 a6e40b37faeef523988d1fbd4123a81920ab47e75164da7d565fdcd2cd489c92

See more details on using hashes here.

File details

Details for the file amplpy-0.3.3-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for amplpy-0.3.3-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 8c9eff60c232c8fb1b1d309dcb9d692ed3c9406ac37654bd883d88aa4b52c9d6
MD5 1850914241198b88512fd36d342b1e62
BLAKE2b-256 f45abf64c839c4e3fa4f73a3ffdbd0ee0a8c4849248a2ac6a5ef2ec900ce1f79

See more details on using hashes here.

File details

Details for the file amplpy-0.3.3-cp27-cp27m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for amplpy-0.3.3-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 53cfb37739601a883e9c8fddeac56c9b1a60b453c31ec3f7785c51a57c35fa23
MD5 fa08b128bb9a1de1b2e676208840f15d
BLAKE2b-256 027deaf69905a8c22318fb03d0c69b579dd4dc7d3198f449ed963a79fdfa1cb5

See more details on using hashes here.

File details

Details for the file amplpy-0.3.3-cp27-cp27m-macosx_10_6_intel.whl.

File metadata

File hashes

Hashes for amplpy-0.3.3-cp27-cp27m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 75a83b55892b2d33b029939103cf2aaecece86f8efca93c195c58d0f5eabf32a
MD5 365004f609310fa96c9792f4bec79131
BLAKE2b-256 84ea9ec5502ccd5530714a472de233eb5a92e84c4aac5276df4d61fae7649f2c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page