Skip to main content

Fast and Light Approximate Nearest Neighbor Search Library integrated with the Jina Ecosystem

Project description

AnnLite

AnnLite is an Approximate Nearest Neighbor Search (ANNS) library integrated with the Jina ecosystem.

This indexer is recommended to be used when an application requires search with filters applied on Document tags. The filtering query language is based on MongoDB's query and projection operators. We currently support a subset of those selectors. The tags filters can be combined with $and and $or:

  • $eq - Equal to (number, string)
  • $ne - Not equal to (number, string)
  • $gt - Greater than (number)
  • $gte - Greater than or equal to (number)
  • $lt - Less than (number)
  • $lte - Less than or equal to (number)
  • $in - Included in an array
  • $nin - Not included in an array

For example, we want to search for a product with a price no more than 50$.

index.search(query, filter={"price": {"$lte": 50}})

More example filter expresses

  • A Nike shoes with white color
{
  "brand": {"$eq": "Nike"},
  "category": {"$eq": "Shoes"},
  "color": {"$eq": "White"}
}

Or

{
  "$and":
    {
      "brand": {"$eq": "Nike"},
      "category": {"$eq": "Shoes"},
      "color": {"$eq": "White"}
    }
}
  • A Nike shoes or price less than 100$
{
  "$or":
    {
      "brand": {"$eq": "Nike"},
      "price": {"$lt": 100}
    }
}

Installation

To install AnnLite you can simply run:

pip install https://github.com/jina-ai/annlite/archive/refs/heads/main.zip

Getting Started

For an in-depth overview of the features of AnnLite you can follow along with one of the examples below:

Name Link
E-commerce product image search with ANNlite Open In Colab

Quick Start

  1. Create a new annlite
import random
import numpy as np
from jina import Document, DocumentArray
from annlite import AnnLite

N = 10000  # number of data points
Nq = 10  # number of query data
D = 128  # dimentionality / number of features

# the column schema: (name:str, dtype:type, create_index: bool)
indexer = AnnLite(dim=D, columns=[('price', float)], data_path='./workspace_data')

Note that this will create a folder ./workspace_data where indexed data will be stored. If there is already a folder with this name and the code presented here is not working remove that folder.

  1. Add new data
X = np.random.random((N, D)).astype(np.float32)  # 10,000 128-dim vectors to be indexed
docs = DocumentArray(
    [
        Document(id=f'{i}', embedding=X[i], tags={'price': random.random()})
        for i in range(N)
    ]
)
indexer.index(docs)
  1. Search with filtering
Xq = np.random.random((Nq, D)).astype(np.float32)  # a 128-dim query vector
query = DocumentArray([Document(embedding=Xq[i]) for i in range(Nq)])

# without filtering
indexer.search(query, limit=10)

print(f'the result without filtering:')
for i, q in enumerate(query):
    print(f'query [{i}]:')
    for m in q.matches:
        print(f'\t{m.id} ({m.scores["euclidean"].value})')

# with filtering
indexer.search(query, filter={"price": {"$lte": 50}}, limit=10)
print(f'the result with filtering:')
for i, q in enumerate(query):
    print(f'query [{i}]:')
    for m in q.matches:
        print(f'\t{m.id} {m.scores["euclidean"].value} (price={m.tags["x"]})')
  1. Update data
Xn = np.random.random((10, D)).astype(np.float32)  # 10,000 128-dim vectors to be indexed
docs = DocumentArray(
    [
        Document(id=f'{i}', embedding=Xn[i], tags={'price': random.random()})
        for i in range(10)
    ]
)
indexer.update(docs)
  1. Delete data
indexer.delete(['1', '2'])

Benchmark

One can run executor/benchmark.py to get a quick performance overview.

Stored data Indexing time Query size=1 Query size=8 Query size=64
10000 2.970 0.002 0.013 0.100
100000 76.474 0.011 0.078 0.649
500000 467.936 0.046 0.356 2.823
1000000 1025.506 0.091 0.695 5.778

Results with filtering can be generated from examples/benchmark_with_filtering.py. This script should produce a table similar to:

Stored data % same filter Indexing time Query size=1 Query size=8 Query size=64
10000 5 2.869 0.004 0.030 0.270
10000 15 2.869 0.004 0.035 0.294
10000 20 3.506 0.005 0.038 0.287
10000 30 3.506 0.005 0.044 0.356
10000 50 3.506 0.008 0.064 0.484
10000 80 2.869 0.013 0.098 0.910
100000 5 75.960 0.018 0.134 1.092
100000 15 75.960 0.026 0.211 1.736
100000 20 78.475 0.034 0.265 2.097
100000 30 78.475 0.044 0.357 2.887
100000 50 78.475 0.068 0.565 4.383
100000 80 75.960 0.111 0.878 6.815
500000 5 497.744 0.069 0.561 4.439
500000 15 497.744 0.134 1.064 8.469
500000 20 440.108 0.152 1.199 9.472
500000 30 440.108 0.212 1.650 13.267
500000 50 440.108 0.328 2.637 21.961
500000 80 497.744 0.580 4.602 36.986
1000000 5 1052.388 0.131 1.031 8.212
1000000 15 1052.388 0.263 2.191 16.643
1000000 20 980.598 0.351 2.659 21.193
1000000 30 980.598 0.461 3.713 29.794
1000000 50 980.598 0.732 5.975 47.356
1000000 80 1052.388 1.151 9.255 73.552

Note that:

  • query times presented are represented in seconds.
  • % same filter indicates the amount of data that verifies a filter in the database.
    • For example, if % same filter = 10 and Stored data = 1_000_000 then it means 100_000 example verify the filter.

Implemented Algorithms

Currently AnnLite supports:

  • HNSW Algorithm (default choice)
  • PQ-linear-scan (requires training)

Research foundations of AnnLite

  • Xor Filters Faster and Smaller Than Bloom Filters
  • CVPR20 Tutorial Billion-scale Approximate Nearest Neighbor Search
  • XOR-Quantization Fast top-K Cosine Similarity Search through XOR-Friendly Binary Quantization on GPUs
  • NeurIPS21 Challenge Billion-Scale Approximate Nearest Neighbor Search Challenge NeurIPS'21 competition track
  • PAMI 2011 Product quantization for nearest neighbor search
  • CVPR 2016 Efficient Indexing of Billion-Scale Datasets of Deep Descriptors
  • NIPs 2017 Multiscale Quantization for Fast Similarity Search
  • NIPs 2018 Non-metric Similarity Graphs for Maximum Inner Product Search
  • ACMMM 2018 Reconfigurable Inverted Index code
  • ECCV 2018 Revisiting the Inverted Indices for Billion-Scale Approximate Nearest Neighbors
  • CVPR 2019 Unsupervised Neural Quantization for Compressed-Domain Similarity Search
  • ICML 2019 Learning to Route in Similarity Graphs
  • ICML 2020 Graph-based Nearest Neighbor Search: From Practice to Theory

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

annlite-0.3.2.dev2.tar.gz (181.6 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page