AntroPy: entropy and complexity of time-series in Python
Project description
AntroPy is a Python 3 package providing several time-efficient algorithms for computing the complexity of time-series. It can be used for example to extract features from EEG signals.
Documentation
Installation
AntroPy can be installed with pip
pip install antropy
or conda
conda config --add channels conda-forge
conda config --set channel_priority strict
conda install antropy
To build and install from source, clone this repository or download the source archive and decompress the files
cd antropy
pip install ".[test]" # install the package
pip install -e ".[test]" # or editable install
pytest
Dependencies
Functions
Entropy
import numpy as np
import antropy as ant
np.random.seed(1234567)
x = np.random.normal(size=3000)
# Permutation entropy
print(ant.perm_entropy(x, normalize=True))
# Spectral entropy
print(ant.spectral_entropy(x, sf=100, method='welch', normalize=True))
# Singular value decomposition entropy
print(ant.svd_entropy(x, normalize=True))
# Approximate entropy
print(ant.app_entropy(x))
# Sample entropy
print(ant.sample_entropy(x))
# Hjorth mobility and complexity
print(ant.hjorth_params(x))
# Number of zero-crossings
print(ant.num_zerocross(x))
# Lempel-Ziv complexity
print(ant.lziv_complexity('01111000011001', normalize=True))
0.9995371694290871 0.9940882825422431 0.9999110978316078 2.015221318528564 2.198595813245399 (1.4313385010057378, 1.215335712274099) 1531 1.3597696150205727
Fractal dimension
# Petrosian fractal dimension
print(ant.petrosian_fd(x))
# Katz fractal dimension
print(ant.katz_fd(x))
# Higuchi fractal dimension
print(ant.higuchi_fd(x))
# Detrended fluctuation analysis
print(ant.detrended_fluctuation(x))
1.0310643385753608 5.954272156665926 2.005040632258251 0.47903505674073327
Execution time
Here are some benchmarks computed on a MacBook Pro (2020).
import numpy as np
import antropy as ant
np.random.seed(1234567)
x = np.random.rand(1000)
# Entropy
%timeit ant.perm_entropy(x)
%timeit ant.spectral_entropy(x, sf=100)
%timeit ant.svd_entropy(x)
%timeit ant.app_entropy(x) # Slow
%timeit ant.sample_entropy(x) # Numba
# Fractal dimension
%timeit ant.petrosian_fd(x)
%timeit ant.katz_fd(x)
%timeit ant.higuchi_fd(x) # Numba
%timeit ant.detrended_fluctuation(x) # Numba
106 µs ± 5.49 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each) 138 µs ± 3.53 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each) 40.7 µs ± 303 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each) 2.44 ms ± 134 µs per loop (mean ± std. dev. of 7 runs, 100 loops each) 2.21 ms ± 35.4 µs per loop (mean ± std. dev. of 7 runs, 100 loops each) 23.5 µs ± 695 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each) 40.1 µs ± 2.09 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each) 13.7 µs ± 251 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each) 315 µs ± 10.7 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
Development
AntroPy was created and is maintained by Raphael Vallat. Contributions are more than welcome so feel free to contact me, open an issue or submit a pull request!
To see the code or report a bug, please visit the GitHub repository.
Note that this program is provided with NO WARRANTY OF ANY KIND. Always double check the results.
Acknowledgement
Several functions of AntroPy were adapted from:
MNE-features: https://github.com/mne-tools/mne-features
pyEntropy: https://github.com/nikdon/pyEntropy
All the credit goes to the author of these excellent packages.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file antropy-0.1.9.tar.gz
.
File metadata
- Download URL: antropy-0.1.9.tar.gz
- Upload date:
- Size: 22.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.0.1 CPython/3.11.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
7c234464e065a566eaff4d367db31c0983ef669803ba7c4e35c74e1518adee21
|
|
MD5 |
2f46fb4f318f0ce6e3ca0518c28000a6
|
|
BLAKE2b-256 |
113f0dfc5d926a3b84234a864d5ea13f6ac3ffcef8bf63ad97426911d91f83dd
|
File details
Details for the file antropy-0.1.9-py3-none-any.whl
.
File metadata
- Download URL: antropy-0.1.9-py3-none-any.whl
- Upload date:
- Size: 18.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.0.1 CPython/3.11.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
b9926491579f6135a0b4461696410abbaf108b182f3d83f009787445625b0089
|
|
MD5 |
7353880230527eacf7eac8b494d2a2a8
|
|
BLAKE2b-256 |
9cd045190403c56c3cd0c2784d5e4bc0def9e8301787b59113d15afd1337e654
|