Skip to main content

A collection of deep learning architectures ported to the python language and tools for basic medical image processing.

Project description

PyPI - Downloads Contributor Covenant PubMed

Advanced Normalization Tools for Deep Learning in Python (ANTsPyNet)

A collection of deep learning architectures and applications ported to the Python language and tools for basic medical image processing. Based on keras and tensorflow with cross-compatibility with our R analog ANTsRNet. ANTsPyNet provides three high-level features:

  • A large collection of common deep learning architectures for medical imaging that can be initialized
  • Various pre-trained deep learning models to perform key medical imaging tasks
  • Utility functions to improve training and evaluating of deep learning models on medical images

Overview

Installation

Binaries

The easiest way to install ANTsPyNet is via pip.

python -m pip install antspynet

From Source

Alternatively, you can download and install from source.

git clone https://github.com/ANTsX/ANTsPyNet
cd ANTsPyNet
python -m pip install .
Architectures

Image voxelwise segmentation/regression

Image classification/regression

Object detection

Image super-resolution

Registration and transforms

Generative adverserial networks

Clustering

Applications
Publications
  • Nicholas J. Tustison, Min Chen, Fae N. Kronman, Jeffrey T. Duda, Clare Gamlin, Mia G. Tustison, Michael Kunst, Rachel Dalley, Staci Sorenson, Quanxi Wang, Lydia Ng, Yongsoo Kim, and James C. Gee. The ANTsX Ecosystem for Mapping the Mouse Brain. (biorxiv)

  • Nicholas J. Tustison, Michael A. Yassa, Batool Rizvi, Philip A. Cook, Andrew J. Holbrook, Mithra Sathishkumar, Mia G. Tustison, James C. Gee, James R. Stone, and Brian B. Avants. ANTsX neuroimaging-derived structural phenotypes of UK Biobank. Scientific Reports, 14(1):8848, Apr 2024. (pubmed)

  • Nicholas J. Tustison, Talissa A. Altes, Kun Qing, Mu He, G. Wilson Miller, Brian B. Avants, Yun M. Shim, James C. Gee, John P. Mugler III, and Jaime F. Mata. Image- versus histogram-based considerations in semantic segmentation of pulmonary hyperpolarized gas images. Magnetic Resonance in Medicine, 86(5):2822-2836, Nov 2021. (pubmed)

  • Andrew T. Grainger, Arun Krishnaraj, Michael H. Quinones, Nicholas J. Tustison, Samantha Epstein, Daniela Fuller, Aakash Jha, Kevin L. Allman, Weibin Shi. Deep Learning-based Quantification of Abdominal Subcutaneous and Visceral Fat Volume on CT Images, Academic Radiology, 28(11):1481-1487, Nov 2021. (pubmed)

  • Nicholas J. Tustison, Philip A. Cook, Andrew J. Holbrook, Hans J. Johnson, John Muschelli, Gabriel A. Devenyi, Jeffrey T. Duda, Sandhitsu R. Das, Nicholas C. Cullen, Daniel L. Gillen, Michael A. Yassa, James R. Stone, James C. Gee, and Brian B. Avants for the Alzheimer’s Disease Neuroimaging Initiative. The ANTsX ecosystem for quantitative biological and medical imaging. Scientific Reports. 11(1):9068, Apr 2021. (pubmed)

  • Nicholas J. Tustison, Brian B. Avants, and James C. Gee. Learning image-based spatial transformations via convolutional neural networks: a review, Magnetic Resonance Imaging, 64:142-153, Dec 2019. (pubmed)

  • Nicholas J. Tustison, Brian B. Avants, Zixuan Lin, Xue Feng, Nicholas Cullen, Jaime F. Mata, Lucia Flors, James C. Gee, Talissa A. Altes, John P. Mugler III, and Kun Qing. Convolutional Neural Networks with Template-Based Data Augmentation for Functional Lung Image Quantification, Academic Radiology, 26(3):412-423, Mar 2019. (pubmed)

  • Andrew T. Grainger, Nicholas J. Tustison, Kun Qing, Rene Roy, Stuart S. Berr, and Weibin Shi. Deep learning-based quantification of abdominal fat on magnetic resonance images. PLoS One, 13(9):e0204071, Sep 2018. (pubmed)

  • Cullen N.C., Avants B.B. (2018) Convolutional Neural Networks for Rapid and Simultaneous Brain Extraction and Tissue Segmentation. In: Spalletta G., Piras F., Gili T. (eds) Brain Morphometry. Neuromethods, vol 136. Humana Press, New York, NY doi

License

The ANTsPyNet package is released under an Apache License.

Acknowledgements
  • We gratefully acknowledge the support of the NVIDIA Corporation with the donation of two Titan Xp GPUs used for this research.

  • We gratefully acknowledge the grant support of the Office of Naval Research and Cohen Veterans Bioscience.

  • HCP-Aging templates acknowledgment: "The HCP-Aging 2.0 Release data used in this analysis was released on the NDA DOI: 10.15154/1520707. HCP-A was supported by the National Institute On Aging of the National Institutes of Health under Award Number U01AG052564 and by funds provided by the McDonnell Center for Systems Neuroscience at Washington University in St. Louis."

Other resources

ANTsPyNet Documentation

ANTsXNet self-contained examples

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

antspynet-0.3.2.tar.gz (147.6 kB view details)

Uploaded Source

File details

Details for the file antspynet-0.3.2.tar.gz.

File metadata

  • Download URL: antspynet-0.3.2.tar.gz
  • Upload date:
  • Size: 147.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for antspynet-0.3.2.tar.gz
Algorithm Hash digest
SHA256 2e843e22a1b19c250591904212aa2e6e97e850cf835e3dffdb798fef996904a1
MD5 d3f3f53992083b754f5a27088e159106
BLAKE2b-256 8eb6d88431b00e348ea01ce9213c1fba79538ca741f63dc7f7497040184c6989

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page